The optomechanical interaction between photonic and phononic waves in micron scale devices is increasingly becoming important for ultrasensitive force and mass sensing applications. Diamond is an exception material for the coupling of optical and mechanical modes because of the low absorption in visible spectrum and high mechanical modulus. To generate optomechanical coupling it is essential to achieve mechanical resonances in the GHz range. Previous work has shown that it is possible to achieve acoustic band gaps at such high frequencies by high-order band gaps which exploit periodic structures with novel topologies. In this work we investigate how the topology and geometry of the periodic structures influence the photon and phonon mode-confinement as well as the optomechanical coupling. By changing the topology and geometry of a unit cell structure based the properties of the targeted Bloch mode, both the resonant mode frequencies and the bandwidth can be tuned. The design method is able to achieve structures with quite large gap sizes for out-of-plane wave, in-plane wave, and the combined waves, which introduces more controllable mechanical modes in the cavity designs in diamond for strong coupling effects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.