Sandia-developed SAR systems are well known for their real-time, high quality, high resolution imagery. Recently, a series of tests were completed with the sub-thirty pound, Ku-band miniSAR system. A large data set was collected including real-time images of a variety of target scenes with resolutions as fine as 4 inches. This paper offers a sampling of real-time, high quality, fine resolution images representative of the output of Sandia's miniSAR radar. Images will be annotated with descriptions of collection geometries and other relevant image parameters. The miniSAR system and Sandia DeHaviland DHC-6 Twin Otter test bed are also briefly discussed.
Sandia-developed SAR systems are well known for their real-time, high quality, high resolution imagery. Recently, a series of tests were completed with the sub-thirty pound, Ku-band miniSAR system. A large data set was collected including real-time images of a variety of target scenes with resolutions as fine as 4 inches. This paper offers a sampling of real-time, high quality, fine resolution images representative of the output of Sandia's miniSAR radar. Images will be annotated with descriptions of collection geometries and other relevant image parameters. The miniSAR system and Sandia DeHaviland DHC-6 Twin Otter test bed are also briefly discussed.
Sandia-developed SAR systems are well known for their real-time, high quality, high resolution imagery. One such system, the General Atomics Lynx radar, has been successfully demonstrated on medium-payload UAVs, including the Predator and Fire Scout. Previously, Sandia reported on its system concept and roadmap for SAR miniaturization, including details of the miniSAR program. This paper and its companions provide an update for miniSAR and discuss the results of the successful May 2005 demonstration of the 26 pound, 4-inch resolution system. Accordingly, the miniSAR system and software implementation and performance are reviewed. Additionally, future plans for miniSAR and the Sandia SAR/GMTI miniaturization efforts are discussed, such as the currently planned miniSAR demonstration onboard a small-payload UAV.
Sandia’s fielded and experimental SAR systems are well known for their real time, high resolution imagery. Previous designs, such as the Lynx radar, have been successfully demonstrated on medium-payload UAVs, including Predator and Fire Scout. However, fielding a high performance SAR sensor on even smaller (sub-50 pound payload) UAVs will require at least a 5x reduction in size, weight, and cost. This paper gives an overview of Sandia’s system concept and roadmap for near-term SAR miniaturization. Specifically, the “miniSAR” program, which plans to demonstrate a 25 pound system with 4 inch resolution in early 2005, is detailed. Accordingly, the conceptual approach, current status, design tradeoffs, and key facilitating technologies are reviewed. Lastly, future enhancements and directions are described, such as the follow-on demonstration of a sub-20 pound version with multi-mode (SAR/GMTI) capability.
Future microwave networks require miniature high-performance tunable elements such as switches, inductors, and capacitors. We report a micro-machined high-performance tunable capacitor suitable for reconfigurable monolithic microwave integrated circuits (MMICs). The capacitor is fabricated on a GaAs substrate using low-temperature processing, making it suitable for post-process integration with MMICs, radio frequency integrated circuits (RFICs) and other miniaturized circuits. Additionally, the insulating substrate and high-conductivity metal provide low-loss operation at frequencies over 20 GHz. The device demonstrates a capacitance of 150 fF at 0 V bias, pull-in at about 15 V to 18 V, and further linear tuning from 290 fF to 350 fF over a voltage range of 7 V to 30 V. Also, the device demonstrates self-resonance frequencies over 50 GHz, and Q’s over 100 at 10 GHz. To enable integration into circuits, a simple equivalent circuit model of the device has been developed, demonstrating a good match to the measured data through 25 GHz. Initial testing to 1 billion cycles indicates that metal fatigue is the primary limitation to reliability and reproducibility, and that dielectric charging does not have a significant impact on the device. This device is promising for high-performance tunable filters, phase shifters, and other reconfigurable networks at frequencies through K-band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.