Spintronic lasers offer promising perspectives for novel concepts and characteristics superior to conventional purely charge-based devices. This applies in particular to spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs), which exhibit ultrafast spin and polarization dynamics. Using pulsed spin-injection, oscillations in the circular polarization degree can be generated, which have the potential to be much faster than conventional relaxation oscillations and may exceed frequencies of 100 GHz. The oscillations originate from the coupled carrier-spin-photon system in birefringent VCSEL cavities. The polarization oscillations are independent from conventional relaxation oscillations and thus can be the cornerstone for ultrafast directly modulated spin-VCSELs in the near future. It is possible to switch the oscillations on and off, depending on phase and amplitude conditions of two consecutive excitation pulses. Even half-cycles can be generated, which is the basis for short polarization pulses, only limited by the polarization oscillation resonance frequency. Experimental results of oscillation switching are given using an 850 nm oxide-confined single-mode VCSEL. In order to increase the polarization oscillation frequency, the birefringence has to be tuned to higher values. We demonstrate a method to manipulate the birefringence by adding mechanical strain to the substrate in vicinity of the VCSEL. With this method the polarization oscillation frequency can be tuned over a wide range. The results are compared to the theory with simulations using the spin-flip-model.
Compared to purely charge based devices, spintronic lasers offer promising perspectives for new superior device concepts. Especially vertical-cavity surface-emitting lasers with spin-polarization (spin-VCSELs) feature ultrafast spin and polarization dynamics. Oscillations in the circular polarization degree can be generated using pulsed spin-injection. The oscillations evolve due to the carrier-spin-photon system that is coupled for the linear modes in the VCSEL's cavity via the birefringence. The polarization oscillations are independent of the conventional relaxation oscillations and have the potential to exceed frequencies of 100 GHz. The oscillations are switchable and can be the basis for ultrafast directly modulated spin-VCSELs for, e.g., communication purposes. The polarization oscillation frequency is mainly determined by the birefringence. We show a method to tune the birefringence and thus the polarization oscillation frequency by adding mechanical strain to the substrate in the vicinity of the laser. We achieved first experimental results for high-frequency operation using 850 nm oxide-confined single-mode VCSELs. The results are compared with simulations using the spin-flip-model for high birefringence values.
Spintronic lasers offer promising perspectives for new concepts superior to options of purely charge-based devices. Especially spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) exhibit ultrafast spin and polarization dynamics. Using pulsed spin-injection, oscillations in the circular polarization degree can be generated, which have the potential to exceed frequencies of 100 GHz. The oscillations evolve due to coupling of the carrier-spin-photon system for linear modes via birefringence in the VCSEL's cavity. They are independent of the conventional relaxation oscillations and thus their usage can be the cornerstone for ultrafast directly modulated spin-VCSELs in the near future. After giving a short overview of the state of scientific and technical knowledge we will outline a method to control the polarization oscillations by multiple spin-injection pulses. It is possible to switch these oscillations on and off, depending on phase and amplitude conditions of two consecutive excitation pulses. Even half-cycles can be generated, which is the basis for short polarization pulses, only limited by the polarization oscillation resonance frequency. We investigate influences of the birefringence, which directly determines the oscillation frequency, by means of calculations with the spin-flip-model and experimental verification using 850 nm VCSELs. Furthermore we discuss experimental possibilities of increasing the birefringence and therefore the oscillation frequency, such that ultrashort pulses come into reach.
Spin-polarized lasers and especially spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) are at- tractive novel spintronic devices providing functionalities and characteristics superior to their conventional purely charge-based counterparts. This applies in particular to ultrafast dynamics, modulation capability and chirp control of directly modulated lasers. Here we demonstrate that ultrafast oscillations of the circular polarization degree can be generated in VCSELs by pulsed spin injection which have the potential to reach frequencies beyond 100 GHz. These oscillations are due to the coupling of the carrier-spin-photon system via the optical birefringence for the linearly polarized laser modes in the micro-cavity and are principally decoupled from conventional relaxation oscillations of the carrier-photon system. Utilizing these polarization oscillations is a very promising path to ultrafast directly modulated spin-VCSELs in the near future as long as an effective concept can be developed to modulate or switch these polarization oscillations. After briefly reviewing the state of research in the emerging field of spin-VCSELs, we present a novel concept for controlled switching of polarization oscillations by use of multiple optical spin injection pulses. Depending on the amplitude and phase conditions of the excitation pulses, constructive or destructive interference of polarization oscillations leads to an excitation, stabilization or switch-off of these oscillations. Furthermore even short single polarization bursts can be generated with pulse widths only limited by the resonance frequency of the polarization oscillation. Consequently, this concept is an important building block for using spin controlled polarization oscillations for future communication applications.
Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.
Spin polarized lasers, especially spin polarized vertical-cavity surface-emitting lasers (VCSEL) provide improved performance when compared to conventional, purely charge-based lasers. Advantages of these spin-enhanced devices lie in their reduced laser threshold, increased emission intensity, amplification of spin information, chirp control and possibilities for ultrafast modulation due to their faster dynamics. Utilizing a commercially available conventional VCSEL and additional spin polarized optical pumping we are able to enhance the modulation dynamics of a conventional VCSEL with new spin effects. Our experiments show polarization oscillations in the spin-photon system that result in oscillations of the circular polarization of the VCSEL emission. The resulting polarization oscillations are of significantly higher frequency than the direct modulation bandwidth of the VCSEL and persist for durations longer than the spin lifetime in the active region. Simulations based on a rate-equation model show that with an improved VCSEL layout it should be possible to reach oscillation frequencies well above 100 GHz. Here, we show that with multiple optical spin polarized pulses these oscillations can be coherently excited, amplified and also stopped. Using this excitation scheme, polarization oscillations faster than the purely charge-based dynamics can be achieved with half-cycle to multi-cycle duration. Various influences of unpolarized electrical bias, optical excitation power and delay between pulses will be discussed both theoretically and experimentally. Additionally, we analyze the qualification of this new concept for ultrafast optical communication.
Efficient electrical spin injection into semiconductor based devices at room temperature is one of the most important requirements for the development of applicable spintronic devices in the near future and is thus an important and very active research field. Here we report experimental results for the electrical spin injection in spin light-emitting diodes (spin-LEDs) without external magnetic fields at room temperature. Our devices consist of a Fe/Tb multilayer spin injector with remanent out-of-plane magnetization, an MgO tunnel barrier for efficient spin injection and an InAs quantum dot light-emitting diode. Using a series of samples with different injection path lengths allows us to experimentally determine the spin relaxation during vertical transport from the spin injector to the active region at room temperature. In combination with our concept for remanent spin injection, we are additionally able to investigate the influence of an external magnetic field on the spin relaxation process during transport. While the spin relaxation length at room temperature without external magnetic field is determined to be 27 nm, this value almost doubles if an external magnetic field of 2 Tesla is applied in Faraday geometry. This demonstrates that the results for spin injection and spin relaxation obtained with or without magnetic field can hardly be compared. The efficiency of spin-induced effects is overestimated as long as magnetic fields are involved. Since strong magnetic fields are not acceptable in application settings, this may lead to wrong conclusions and potentially impairs proper device development.
Spin-polarized lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. Spin-polarized vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. In particular, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. After briefly reviewing the state of research in this emerging field of spintronics, we present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than those. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future.
We report experimental results on the electron spin relaxation length during vertical transport in spin lightemitting diodes (LEDs). Our devices are GaAs based LEDs with InAs quantum dots in the active region, an MgO tunnel barrier and an Fe/Tb multilayer spin injector with perpendicular magnetic anisotropy, i.e. remanent out-of-plane magnetization, enabling efficient electrical spin injection in magnetic remanence. Additionally, our devices can be operated at room temperature. A series of samples with different injection path lengths allows us to experimentally determine the spin relaxation length in our devices. In combination with operation in magnetic remanence, we are able to determine the spin relaxation length without the influence of external magnetic fields and at room temperature and find it to be 27 nm. Applying an additional external magnetic field, we find that at a field strength of 2 T, this relaxation length almost doubles, which is in good agreement with spin relaxation times in GaAs. Temperature control of our samples allows us to measure the temperature dependence of the spin relaxation length. At 200 K, the spin relaxation length doubles to 50 nm and reaches 80 nm at 30 K, in good agreement with theoretic calculations. Our results show that polarization values obtained with spin-LEDs inside strong magnetic fields and at low temperatures are not comparable to those in remanence and at room temperature. However, the transfer of efficient spintronic devices to such applicationenabling settings is absolutely necessary and will be a major challenge considering the enormous differences in spin relaxation.
Spin-optoelectronic devices have become a field of intensive research in the past few years. Here we present
electrical spin injection into spin light-emitting diodes both at room temperature and in magnetic remanence.
Our devices consist of a Fe/Tb multilayer spin injection structure with remanent out-of-plane magnetization, a
MgO tunnel barrier for efficient spin injection and an InAs quantum dot light-emitting diode. The ground state
emission and first excited state emission both show circularly polarized emission in remanence, i.e. without
external magnetic fields which is due to spin injection from our ferromagnetic contact. Using a series of samples
with varying transport path lengths between the spin injector and the active region, we investigate the spin
relaxation length during vertical carrier transport through our devices. Due to our spin injector with remanent
out-of-plane magnetization this spin relaxation can be investigated without the need for external magnetic fields
which would possibly influence the spin relaxation process. The decrease in circular polarization with increasing
injection path length is found to be exponential, indicating drift-based transport which is in accordance with
theoretic calculations. From the exponential decay the spin relaxation length of 26 nm as well as a lower bound
for the spin injection efficiency of 25% are calculated. Additionally, influences of magnetic field, temperature
and current density in the devices on the spin relaxation process are discussed.
Spin-controlled vertical-cavity surface-emitting lasers (VCSELs) have been intensively studied in recent years because
of the low threshold feasibility and the nonlinearity above threshold, which make spin-VCSELs very promising for
spintronic devices. Here we investigate the circular polarization dynamics of VCSELs on a picosecond time scale after
pulsed optical spin injection at room temperature. A hybrid excitation technique combining continuous-wave (cw)
unpolarized electrical excitation slightly above threshold and pulsed polarized optical excitation is applied. The
experimental results demonstrate ultrafast circular polarization oscillations with a frequency of about 11 GHz. The
oscillations last inside the first undulation of the intensity relaxation oscillations. Via theoretical calculations based on a
rate equation model we analyze these oscillations as well as the underlying physical mechanisms.
Spin-polarized lasers offer new encouraging possibilities for future devices. We investigate the polarization dynamics of
electrically pumped vertical-cavity surface-emitting lasers after additional spin injection at room temperature. We find
that the circular polarization degree exhibits faster dynamics than the emitted light. Moreover the experimental results
demonstrate a strongly damped ultrafast circular polarization oscillation due to spin injection with an oscillation
frequency of approximately 11GHz depending on the birefringence in the VCSEL device. We compare our experimental
results with theoretical calculations based on rate-equations. This allows us to predict undamped long persisting ultrafast
polarization oscillations, which reveal the potential of spin-VCSELs for ultrafast modulation applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.