A new micromachining technique using user-defined trains of amplified femtosecond laser pulses is described. In this method, a 2-fold Michelson interferometer is used to split each output pulse of an amplified femtosecond laser system operating at 1 kHz into four different pulses at desired seperations ranging from 1 ps to 1 ns. These quadruple pulses are then focused on metal, semiconductor and dielectric samples and the material removal characteristics are noted. The experimental results show that there is a distinct effect of the pulse separation on the machining characteristics. It is observed that, in some cases, use of the quadruple pulses separated by 1 ns provides better material removal than the original pulses separated by 1 ms. The femtosecond laser-material interaction is also modeled for the case of metal samples using the two-temperature model. Numerical simulations that were carried out show that irradiation with quadruple pulses lead to a reduction in the predicted melting threshold fluence, which agrees with the experimental observation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.