This will count as one of your downloads.
You will have access to both the presentation and article (if available).
This paper describes the experimental implementation of an AO pre-compensated link on a 13 km slant path in Tenerife, Canary Islands. This experiment is designed to be representative of a GEO feeder link, and aims at demonstrating a significant increase of the mean received power and decrease of the power fluctuations thanks to AO. It will also allow to study the impact of the point-ahead angle on overall performance of the AO system.
The FEEDELIO experiment is planned for spring 2019.
We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wavefront is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using.
Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.
Keywords: adaptive optics, atmospheric turbulence, deconvolution, image restoration, inverse problems, telescope
View contact details
No SPIE Account? Create one