Saliency detection is a fundamental problem in computer vision and image processing. Deep learning models perform better than traditional approaches but suffer from their huge parameters and slow speeds. To handle these problems, in this paper we propose the Dense Dilation Network(DDN) -- a novel saliency model based on Dense Convolutional Network(DenseNet), all layers' feature maps are extracted in the same resolution through a step-wise upsampling procedure which contains dilated convolution filters and deconvolution filters. To derive saliency maps, we propose a fusion dense block which contains dilated convolution filters and 1×1 Conv layers to fuse all low-level and high-level feature maps. DDN is an end-to-end architecture which does not need any post-processing procedures. Experiments on the benchmark datasets demonstrate that DDN outperforms the state-of-the-art methods on saliency detection and it requires less parameters and computation time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.