This study aims to propose a novel method for multi-beam tomosynthesis using a single-beam x-ray source based on carbon nanotubes (CNTs) and compact vacuum CNT-based x-ray tubes are arranged on a 3D hemispherical curve. The proposed method enables each member of a multi-beam x-ray gantry to face the center of the same field of view (FOV), which has potential applications in medical imaging. This study evaluates the feasibility of our proposed method and its potential advantages over existing methods.
We have designed a 160kV radiation source based on carbon nanotubes (CNT) capable of irradiating cells. The functionality of the designed system was verified by assessing the physical and chemical properties of directly synthesized CNT and the resulting x-ray dosage emitted. The conventional x-ray source widely used until now employs an analog method that generates thermal electrons through filament heating. To overcome the limitations of this existing analog method, a novel digital x-ray tube capable of instantaneously controlling power became essential. Taking these aspects into consideration, our study developed a 160kV x-ray source based on CNT, enabling digital control of x-ray energy and dosage. We anticipate that our developed source can find applications in the field of cell therapy in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.