Metrology requirements at advanced nodes are not only tightening on specifications but also broadening in terms of flexibility needed to cover variety of product stacks. Metrology targets need to be process compatible and at the same time these targets should also be readable by the metrology system. In some cases, process conditions require a target pitch that is large compared to the wavelength used by the metrology system. Examples of these situations include for instance topography transfer or stacks with thick resist (for e.g. 3D-NAND). Traditionally overlay is extracted from the asymmetry in the positive and negative first diffraction order generated from μDBO targets. However, when the pitch is large, the targets generate multiple higher diffraction orders. Current state-of-the-art diffraction based overlay systems do not take into account the effect of these higher diffraction orders and typically only select the first diffraction order. This is done by reducing the pitch of the target, tuning the wavelength or by changing the angle of incidence of the illumination light. To address wavelength over pitch flexibility an advanced algorithm was introduced on a new metrology system in the fab, providing full flexibility in the selection of measurement wavelength and pitch. To obey the specifications on accuracy and throughput, we will present a new metrology system that is, compared to its predecessor, about 2x faster and able to measure more accurately because of the ability to measure multiple wavelengths within the same time frame.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.