Efficient energy transport is highly desirable for organic semiconductor (OSC) devices such as photovoltaics, photodetectors, and photocatalytic systems. However, photo-generated excitons in OSC films mostly occupy highly localized states over their lifetime. Energy transport is hence thought to be mainly mediated by the site-to-site hopping of localized excitons, limiting exciton diffusion coefficients to below ~10-2 cm2/s with corresponding diffusion lengths below ~50 nm. Here, using ultrafast optical microscopy combined with non-adiabatic molecular dynamics simulations, we present evidence for a new highly-efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. In films of highlyordered poly(3-hexylthiophene) nanofibers, prepared using living crystallization-driven self-assembly, we show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm2/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of the basic picture of exciton dynamics. This establishes new design rules to engineer efficient energy transport in OSC films, which will enable new devices architectures not based on restrictive bulk heterojunctions.
Organic-inorganic metal-halide perovskites have attracted great attention in recent years due to their remarkable semiconductor properties. While great advances have been made towards understanding dynamics under steady-state conditions, the importance of non-equilibrium phenomena and their effect on device performances remains elusive.
To provide experimental access to the unexplored regime of spatiotemporal dynamics occurring on ultrafast timescales, we combined the extreme temporal resolution provided by ultrafast spectroscopy with the nm-level localisation capabilities of optical microscopes. We focused our investigation on the spatial carrier dynamics of well characterised methylammonium lead iodide system (MAPI3-xClx).
Intriguingly, the consecutive fs-TAM images reveal a pronounced spatial expansion of the carrier distribution within a few tens of fs. The mean-squared-displacement (MSD) profile of the non-equilibrium carriers grows non-linearly, in contrast to the linear behaviour expected for normal diffusion. Further, the MSD profile is well described by a power law fit, signifying that the non-equilibrium carriers in perovskite thin films propagate in a ballistic manner during the initial 20 fs. In addition, the linear fit reveals the ballistic transport length of 153 nm. T ballistic transport velocity of 7.5 ×106 ms-1 is in approximate agreement with the group velocity of electrons within the conduction band as modelled by density functional theory. This implies that photogenerated carriers propagate as coherent wavepackets and have a non-interacting nature at the earliest times following photon absorption. Our results suggest that at least ~25% of carriers generated in a typical perovskite PV device reach the charge collection layers ballistically
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.