Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.
An ex vivo study was conducted to determine the effect of the irregularity of the scaffold surface on the tensile strength of repairs formed using our Scaffold-Enhanced Biological Adhesive (SEBA). Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal submucosa, manufactured by Cook BioTech. The scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The tensile strength of repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung, using the smooth and irregular surfaces of the above scaffold-enhanced materials were measured and the time-to-failure was recorded. The tensile strength of repairs formed using the irregular surfaces of the scaffolds were consistently higher than those formed using the smooth surfaces of the scaffolds. The largest difference was observed on repairs formed on the aorta and small intestine, where the repairs were, on average, 50% stronger using the irregular versus the smooth scaffold surfaces. In addition, the time-to-failure of repairs formed using the irregular surfaces of the scaffolds were between 50% and 100% longer than that achieved using the smooth surfaces of the scaffolds. It has previously been shown that distributing or dispersing the adhesive forces over the increased surface area of the scaffold, either smooth or irregular, produces stronger repairs than albumin solder alone. The increase in the absolute strength and longevity of repairs seen in this new study when the irregular surfaces of the scaffolds are used is thought to be due to the distribution of forces between the many independent micro-adhesions provided by the irregular surfaces.
Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon’s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or by wounds following suture removal. This hypothesis is supported by the data of this study, as well as, the acute tensile strength data of Part I of this study.
The ability to reproduce strong repairs is essential to establishing the reliability of laser-tissue soldering techniques and advancing their use to the clinical setting. While some thermal damage is necessary to achieve a viable solder-tissue bond, excessive thermal damage leads to decreased flexibility and strength of the repair. In addition, if the temperature at the solder/tissue interface is too low, inadequate solder-tissue bonding will occur to provide a strong repair. This suggests the presence of an optimal temperature for laser-tissue repair. The choice of solder material presents another challenge to the reproducibility of strong repairs. The emerging use of chromophore-enhanced solder-doped polymer scaffolds offers numerous advantages over more traditional liquid and solid solders composed of serum albumin and an absorbing chromophore mixed in deionized water. Polymer scaffolds, fabricated from poly(L-lactic-co-glycolic acid) using a solvent casting and particulate leaching technique, are porous enough to absorb serum albumin and can also be doped with various hemostatic and thrombogenic agents to aid in tissue healing. Use of the polymer scaffolds allows one to combine the strength of solid solders and the flexibility of liquid solders without the common “runaway” problems. An in vitro study was performed to correlate tissue temperature with the tensile strength of arterial repairs formed using the chromophore-enhanced solder-doped polymer scaffolds. Laser irradiance was varied and the solder surface and solder/tissue interface temperatures were monitored by an IR temperature monitoring system and a type-K thermocouple, respectively. The solder/tissue interface temperature required for optimized tensile strength was determined to be 67 ± 5°C. This value was in agreement with previous studies using serum albumin solders alone, where the optimal solder/tissue interface temperature was found to be 65°C.
The use of indocyanine green-doped albumin protein solders has been shown to vastly improve the anastomotic strength that can be achieved by laser tissue repair techniques, while at the same time minimizing collateral thermal tissue damage. However, the safety of the degradation products of the chromophore following laser irradiation is uncertain. Therefore, we studied the feasibility of using alternative chromophores in terms of temperature rise at the solder/tissue interface, the extent of thermal damage in the sourrounding tissue, and the tensile strength of repairs. Biodegradable polymer scaffolds of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid), using a solvent-casting and particulate-leaching technique. The porous scaffold acted as a carrier to the traditional protein solder composition of serum albumin and an absorbing chromophore mixed in deionized water. Two commonly used chromophores, indocyanine green and methylene blue were investigated, as well as blue and green food colorings. Temperature rise at the solder surface and at the interface between the solder and tissue were monitored by an IR temperature monitoring system and a type-K thermocouple, respectively, and the extent of thermal damage in the underlying tissue was determined using light microscopy. As expected, temperature rise at the solder/tissue interface, and consequently the degree of collateral thermal tissue damage, was directly related to the penetration depth of the laser light in the protein solder. Optimal tensile strength of repairs was achieved by selecting a chromophore concentration that resulted in a temperature of 66 ± 3°C at the solder/tissue interface.
A study was conducted to determine the feasibility of using alternative chromophores in light-activated surgical adhesives. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40, blue #1, and green food coloring consisting of yellow #5 and blue #1. The study consisted of three components. First, the absorption profiles of the five chromophores, both diluted in deionized water and bound to protein, were recorded with a UV-Vis-NIR spectrophotometer. Second, the effect of accumulated thermal dosages on the stability of the absorption profiles was investigated. Third, the stability of the absorption profiles of the chromophore solutions when exposed to ambient light for an extended period of time was investigated.
The peak absorption wavelengths of ICG, MB, red #40, and blue #1, were found to be 780 nm, 665 nm, 500 nm, and 630 nm respectively. The green food coloring had two absorption peaks at 417 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of the ICG shifted to 805 nm when bound to protein. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperatures up to 100 degrees C. Negligible change in absorption with accumulated thermal dose was observed for any of the three food colorings investigated. Photobleaching was observed in both ICG and MB solutions with exposure to a white light source. An 88% decrease in absorption was seen in ICG deionized water solution after 7 days of exposure with a corresponding 33% decrease in absorption seen in the MB deionized water solution. A negligible drop in absorption was observed from exposure to ambient light for a 12-week period with the three food colorings investigated.
An ex vivo study was conducted to compare the tensile strength of tissue samples repaired using three different techniques: (i) application of a scaffold-enhanced light-activated albumin protein solder, (ii) application of a scaffold-enhanced n-butyl-cyanoacrylate adhesive, and (iii) repair via conventional suture technique. Biodegradable polymer scaffolds of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) and salt particles using a solvent-casting and particulate-leaching technique. Group I porous scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. Group II scaffolds were doped with n-butyl-cyanoacrylate, and required no light-activation. No stay sutures were required for Group I or II experiments. Group III repairs were performed using a single 4-0 suture. Thirteen organs were tested ranging from skin to liver to the small intestine, as well as the coronary, pulmonary, carotid, femoral and splenic arteries. Acute breaking strengths were measured and the data were analyzed by Student’s T-test. Using the protein solder of Group I, repairs formed on the ureter were most successful followed by small intestine, sciatic nerve, spleen, atrium, kidney, muscle, skin and ventricle. The strongest vascular repairs were achieved in the carotid artery and femoral artery. Overall, the tensile strength of Group III repairs performed via suture techniques were equivalent in magnitude to that of Group I repairs, however, a larger variance was observed in the suture repair group. Group II repairs utilizing the cyanoacrylate-doped scaffold all performed extremely well. Bonds formed using the Group II adhesive were approximately 30% stronger than Group I and III organ repairs and approximately 20% stronger than Group I and III vascular repairs. Application of the polymer scaffold assists in tissue alignment and reduces problems associated with adhesive runaway from the repair site. Scaffold-enhanced adhesives could possibly be used as a simple and effective method to join tissue together quickly and effectively in an emergency situation, or as a substitute to mechanical sutures or staples in many clinical applications.
An investigation was conducted to assess the feasibility ofusing various synthetic polymers as scaffolds to traditional albumin protein solders with the aim of enhancing the mechanical strength of repairs formed during laser tissue soldering. Biodegradable polymer membranes of controlled porosity were fabricated with either polylactic acid (PLA), polyglycolic acid (PGA), or two different poly(L-lactic-co-glycolic acid) (PLGA) blend ratios, using a solvent-casting and particulate-leaching technique. In addition, membranes were prepared by combining each of the above mentioned polymers with poly(ethylene glycol) (PEG). The porous membranes provided a scaffold into which the traditional protein solder composition of serum albumin and indocyanine green dye mixed in deionized water was readily absorbed. Studies were conducted to assess the influence of various processing parameters on the strength of tissue repairs formed using the new adhesives. These parameters included the polymer type, the polymer/PEG blend ratio, the salt particle size, and the initial albumin weight fraction. No significant difference was observed between the four polymers investigated, however, variation of the polymer type and blend ratio is known to influence the degradation rate of the membranes. The addition of PEG to the films during the casting stage was observed to increase the flexibility of the membranes. Finally, repair strength increased significantly with an increase in the size ofpores present in the membranes and with increased protein concentration.
Traditional protein solders composed of serum albumin, an optional absorption chromophore, and water, are soluble in physiological fluids before laser irradiation. This can be problematic for application of the solder to the tissue, as some of the material tends to run away before it is bonded to the tissue. In addition, as the solder is subjected to blood dilution during application, the mechanical properties are altered and consequently, the strength of the repair is compromised. This ultimately leads to poor reproducibility and reliability of the repair technique. Enhancement of these protein solders with a synthetic polymer membrane composed of poly(L-lactic-co-glycolic acid) was investigated as a means for increasing the stability of the solders in physiological fluids prior to irradiation. In addition, predenaturation of both the traditional and membrane enhanced solders in a hot water bath at 75°C was investigated as a means to decrease the solubility of the solders, thus improving their handling characteristics, prior to laser irradiation. A Bradford protein assay was used to measure the solubility of the protein solders prior to thermal denaturation with a laser. To compare these results with the final product of laser tissue repairs, the solubility analysis was also performed on similar specimens after laser irradiation with an 805-nm diode laser. Doping of the solder in a polymer membrane and predenaturation of the solders at 75 °C were found to be advantageous for improving their handling characteristics. Alteration of the mechanical properties of the solders prior to laser treatment was also prevented, thus improving the reproducibility and reliability of the repairs. Finally, the solubility of protein solders of varying composition was correlated with the mechanical strength of arterial repairs formed in an in vitro porcine model. The data suggests that there should be an optimal solubility at which solder/tissue contact is maximized and solder runaway minimized, thus resulting in a superior bond.
An in vivo study was conducted to investigate the feasibility, mechanical function, and chronic biocompatibility of a new range of light-activated surgical adhesives for vascular anastomosis. Porcine carotid arteries (n=12) and femoral arteries (n=12) were exposed, and a 0.3 -0.6cm longitudinal incision was made in the arterial walls. The vessels were divided equally into two groups. Vessels belonging to the first group were repaired using a surgical adhesive, composed of a poly(L-lactic-co-glycolic acid) scaffold doped with the traditional protein solder mix of serum albumin and indocyanine green dye mixed in deionized water. The adhesive was applied across the incision and denatured using an 805-nm diode laser. Vessels belonging to the second group formed part of a control study, and were repaired using conventional suturing techniques. Blood flow was restored to the vessels immediately after the procedure and the incision sites were checked for patency. The strength and hemostatic abilities of the new surgical adhesives were evaluated in the context of arterial pressure, persistence of hemostasis and presence of any inflammatory reaction after 3 days. The adhesive technique compared favorably with the suture technique. Repairs formed with the adhesive technique were achieved more rapidly than suturing, and acute leakage was observed less frequently. Repairs closed by suture did not burst, but leaked at pressures significantly below those of vessels closed with the adhesive material. Finally, the adhesive technique produced better histology than the suture technique, suggesting that it holds great promise as an alternative to suturing.
An in vivo study was conducted to investigate the feasibility, mechanical function, and chronic biocompatibility of a new light-activated surgical adhesive for achieving rapid hemostasis of the puncture site following diagnostic catheterization and interventional cardiac procedures. Porcine carotid arteries (nequals6) and femoral arteries (nequals6) were exposed, and an incision was made in the arterial walls using a 16G needle. The surgical adhesive, composed of a poly(L-lactic-co-glycolic acid) scaffold doped with the traditional protein solder mix of serum albumin and indocyanine green dye, was used to close the incisions in conjunction with an 805-nm diode laser. Blood flow was restored to the vessels immediately after the procedure and the incision sites were checked for patency. The strength and hemostatic abilities of the new surgical adhesive were evaluated in the context of arterial pressure, persistence of hemostatis and presence of any inflammatory reaction after 3 days. After this evaluation period, the surgical procedure was repeated on the carotid arteries (nequals6) and femoral arteries (nequals6) of three additional animals that had been heparinized prior to surgery to closer approximate the conditions seen in a typical vascular surgical setting.
An in vitro study was conducted to determine the feasibility of using a new range of light-activated surgical adhesives for incision repair in a wide range of tissue types. Biodegradable polymer membranes of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) (PLGA) and salt particles using a solvent-casting and particulate- leaching technique. The porous membranes were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5 mg/ml indocyanine green (ICG) dye mixed in deionized water. Tissue incisions were repaired using the surgical adhesive in conjunction with an 805-nm diode laser. Nine organs were tested ranging from skin to liver to the small intestine, as well as the coronary, pulmonary, carotid, femoral and splenetic arteries. Acute breaking strengths were measured and the data were analyzed by Student's T-test. Repairs formed on the small intestine were most successful followed by spleen, atrium, kidney, muscle and skin. The strongest vascular repairs were achieved in the carotid artery and femoral artery. The new surgical adhesive could possibly be used as a simple and effective method to stop bleeding and repair tissue quickly in an emergency situation, or as a substitute to mechanical staples or sutures in many clinical applications.
Newly developed light-activated surgical adhesives have been investigated as a substitute to traditional protein solders for vascular tissue fusion without the need for sutures. Canine femoral arteries (n equals 14), femoral veins (n equals 14) and carotid arteries (n equals 10) were exposed, and a 0.3 to 0.6 cm longitudinal incision was made in the vessel walls. The surgical adhesive, composed of a poly(L-lactic-co-glycolic acid) scaffold doped with the traditional protein solder mix of bovine serum albumin and indocyanine green dye, was used to close the incisions in conjunction with an 805 nm diode laser. Blood flow was restored to the vessels immediately after the procedure and the incision sites were checked for patency. The new adhesives were flexible enough to be wrapped around the vessels while their solid nature avoided the problems associated with 'runaway' of the less viscous liquid protein solders widely used by researchers. Assessment parameters included measurement of the ex vivo intraluminal bursting pressure one to two hours after surgery, as well as histology. The acute intraluminal bursting pressures were significantly higher in the laser-solder group (greater than 300 mmHg) compared to the suture control group (less than 150 mmHg) where four evenly spaced sutures were used to repair the vessel (n equals 4). Histological analysis showed negligible evidence of collateral thermal damage to the underlying tissue in the laser-solder repair group. These initial results indicated that laser-assisted vascular repair using the new adhesives is safe, easy to perform, and contrary to conventional suturing, provides an immediate leak-free closure. In addition, the flexible and moldable nature of the new adhesives should allow them to be tailored to a wide range of tissue geometries, thus greatly improving the clinical applicability of laser-assisted tissue repair.
The purpose of this study was to determine if solid material reinforcement of a liquid albumin solder coagulum could improve the cohesive strength of the solder and thus the ultimate breaking strength of the incision repair in vitro. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green (ICG) dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806 nm CW diode laser. A 50 micrometer thick poly(DL-lactic-co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). Acute breaking strengths were measured and the data were analyzed by one-way ANOVA (P less than 0.05). Multiple comparisons of means were performed using the Newman- Keuls test. Observations of the failure modes indicated cohesive strength reinforcement of the test specimens versus the controls. At the higher laser powers used in this study (400 and 450 mW), the reinforced solder was consistently stronger than the controls. Reinforcement of liquid albumin solders in laser-assisted incision repair may have mechanical advantages in terms of acute breaking strength over conventional methods that do not reinforce the cohesive strength of the solder.
Solid protein solder-doped polymer membranes have been developed for laser-assisted tissue repair. Biodegradable polymer films of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) using a solvent-casting and particulate-leaching technique. The films provided a porous scaffold that readily absorbed the traditional protein solder mix composed of bovine serum albumin (BSA) and indocyanine green (ICG) dye. In vitro investigations were conducted to assess the influence of various processing parameters on the strength of tissue repairs formed using the new membranes. These parameters included the PLGA copolymer and PLGA/PEG blend ratio, the salt particle size, the initial bovine serum albumin (BSA) weight fraction, and the laser irradiance used to denature the solder. Altering the PLGA copolymer ratio had little effect on repair strength, however, it influenced the membrane degradation rate. Repair strength increased with increased membrane pore size and BSA concentration. The addition of PEG during the film casting stage increased the flexibility of the membranes but not necessarily the repair strength. The repair strength increased with increasing irradiance from 12 W/cm2 to 15 W/cm2. The new solder-doped polymer membranes provide all of the benefits associated with solid protein solders including high repair strength and improved edge coaptation. In addition, the flexible and moldable nature of the new membranes offer the capability of tailoring the membranes to a wide range of tissue geometries, and consequently, improved clinical applicability of laser- assisted tissue repair.
The purpose of this study was to explore the feasibility of using a free-electron laser (FEL) to photothermally coagulate an albumin solder for laser-assisted incision closure. A 50%(w/v) bovine serum albumin solder was used to repair an incision in bovine aorta. The solder was coagulated by targeting absorption peaks in the solder infrared absorption spectrum using the FEL. Acute breaking strengths of repaired incisions were measured and the data analyzed by one-way ANOVA (P < 0.05). Multiple comparisons of means were performed using the Newman-Keuls test. The solder absorption spectrum from 2 - 10 microns was similar to water with an additional peak at 6.45 microns (amide II) due to the albumin. Preliminary results indicated that wavelengths at or very close to the absorption peaks were excessively absorbed, resulting in only the top surface of the solder being coagulated. Using wavelengths at points of weak absorption on the water absorption curve yielded better results.
An in vitro study was performed using an 808nm-diode laser in conjunction with indocyanine green-doped albumin protein solders to repair bovine aorta specimens. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared.
The tensile strengths of the repairs were greatly improved with an increase in BSA concentration from 25% to 60% and a reduction in ICG dye concentration from 2.5 mg/ml to 0.25 mg/ml. Increasing the later irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of the tissue substrate increased laterally and in depth with higher temperatures. Optimal repairs in terms of bond strength and thermal damage were achieved by denaturing a solid protein solder composed of 60% BSA and .025mg/ml ICG with an irradiance of 6.4 W/cm2. Using this combination of solder and laser parameters, surface temperatures were observed to reach 85±5°C with an average temperature difference across the solder strips of 15°C across a thickness of 150 μm. Histological examination of the repairs formed using these parameters showed negligible evidence of collateral thermal damage to the underlying tissue. Scanning electron microscopy suggested albumin intertwining within the itssue collagen matrix and subsequent fusion with the collagen as the mechanism for laser tissue soldering.
Recent laser-tissue soldering work in our lab has demonstrated the feasibility of building a solder bond from individually coagulated small droplets using a precision pipette for the deposition of the solder droplets. This method of using small, precise volumes of solder to build a bond may result in stronger and more reproducible bonds than coagulating an equivalent large volume of solder all at once. We have investigated the technique further in this study. The solder was dispensed onto the intimal side of a bovine aorta substrate and irradiated with an 808nm diode laser. A bond was created across an incision in the tissue substrate by alternately dispensing and coagulating each small volume of solder, or by coagulating a single large equivalent volume. Acute strength analysis was performed on the solder bond. Future work will concentrate on testing a bench-top solder dispensing device and investigating the feasibility of turning the deice into a prototype tool for clinical applications.
Quantitative data regarding photothermal and damage processes during pulsed laser irradiation of blood are necessary to achieve a better understanding of laser treatment of cutaneous vascular lesions and improve numerical models. In this study, multiple experimental techniques were employed to quantify the effects os single- pulse KTP laser (λ = 532 nm, τp= 10 ms) irradiation of whole blood in vitro: high-speed temperature measurement with a thermal camera in line-scan mode (8 kHz); optical coherence tomography; and transmission measurement with a co-aligned laser beam (λ=635 nm). Threshold radiant exposures for coagulation (4.4-5.0 J/cm2) and ablation (~ 12 J/cm2) were identified. Thermal camera measurements indicated threshold coagulation temperatures of 90-100°C, and peak temperatures of up to 145°C for sub-ablation radiant exposures. Significant changes in coagulum thickness and consistency, and a corresponding decrease in transmission, were observed with increasing radiant exposure. The Arrhenius equation was shown to produce accurate predictions of coagulation onset. The significant of dynamic effects such as evaporative loss and dynamic changes in optical properties was indicated. Implications for numerical modeling are discussed. Most importantly, the threshold temperatures typically quoted in the literature for pulsed laser coagulation (60-70 °C) and ablation (100 °C) of blood do not match the result of this study.
Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.
Laser-assisted repair of nerves is often unsatisfactory and has a high failure rate. Two disadvantages of laser assisted procedures are low initial strength of the resulting anastomosis and thermal damage of tissue by laser heating. Temporary or permanent stay sutures are used and fluid solders have been proposed to increase the strength of the repair. These techniques, however, have their own disadvantages including foreign body reaction and difficulty of application. To address these problems solid protein solder strips have been developed for use in conjunction with a diode laser for nerve anastomosis. The protein helps to supplement the bond, especially in the acute healing phase up to five days post- operative. Indocyanine green dye is added to the protein solder to absorb a laser wavelength (approximately 800 nm) that is poorly absorbed by water and other bodily tissues. This reduces the collateral thermal damage typically associated with other laser techniques. An investigation of the feasibility of the laser-solder repair technique in terms of required laser irradiance, tensile strength of the repair, and solder and tissue temperature is reported here. The tensile strength of repaired nerves rose steadily with laser irradiance reaching a maximum of 105 plus or minus 10 N.cm-2 at 12.7 W.cm-2. When higher laser irradiances were used the tensile strength of the resulting bonds dropped. Histopathological analysis of the laser- soldered nerves, conducted immediately after surgery, showed the solder to have adhered well to the perineurial membrane, with minimal damage to the inner axons of the nerve. The maximum temperature reached at the solder surface and at the solder/nerve interface, measured using a non-contact fiber optic radiometer and thermocouple respectively, also rose steadily with laser irradiance. At 12.7 W.cm-2, the temperatures reached at the surface and at the interface were 85 plus or minus 4 and 68 plus or minus 4 degrees Celsius respectively. This study demonstrates the feasibility of the laser-solder repair technique for nerve anastomosis resulting in improved tensile strength. The welding temperature required to achieve optimal tensile strength has been identified.
A GaAlAs semiconductor diode laser operating at a wavelength of 796 nm has been sued in conjunction with Indocyanine Green (ICG) dye to ablate carious dentin and enamel from extracted human teeth. The laser-dye ablation technique offers selective ablation as it is controlled by the placement of the ICG dye. In contrast with other laser techniques, the risk of collateral thermal damage is substantially reduced. The diode laser is suitable for ordinary fiber delivery and is cheaper and more compact than the higher power CO2; Er:YAG, Nd:YAG and Argon lasers currently being used by researchers. This paper reports the ablation of dental caries in fifty extracted teeth with various laser diode powers and dye concentrations. The mass of material ablated, temperature rise in the pulp and surface temperature were measured. The ablation was found to be efficient with negligible thermal damage to surrounding tissue. At the same time average surface temperatures reached during ablation may be sufficient to sterilize the treated surface. Hardness measurements and scanning electron microscopy of the laser treated cavity surfaces show the new surfaces to be suitable for placement of a dental filling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.