A design study is compiled for a VIS-SWIR dual band 3X zoom lens. The initial first order design study investigated zoom motion, power in each lens group, and aperture stop location. All designs were constrained to have both the first and last lens groups fixed, with two middle moving groups. The first order solutions were filtered based on zoom motion, performance, and size constraints, and were then modified to thick lens solutions for the SWIR spectrum. Successful solutions in the SWIR were next extended to the VIS-SWIR. The resulting nine solutions are all nearly diffraction limited using either PNNP or PNPZ (“Z” indicating the fourth group has a near-zero power) design forms with two moving groups. Solutions were found with the aperture stop in each of the four lens groups. Fixed f-number solutions exist when the aperture stop is located at the first and last lens groups, while varying f-number solutions occur when it is placed at either of the middle moving groups. Design exploration included trade-offs between parameters such as diameter, overall length, back focal length, number of elements, materials, and performance.
An all-plastic high-performance eyepiece design utilizing a polymer spherical gradient-index optical element is presented. The use of a gradient-index lens in the eyepiece offers better off-axis and chromatic aberration correction, as well as overall performance improvement compared to a similar eyepiece with all homogeneous lenses.
High-performance eyepiece designs have been carried out using both spherical and radial gradient-index (GRIN)
elements. Eyepiece designs of both geometries are shown to offer superior imaging performance with fewer elements
when compared to purely homogeneous systems. These GRIN lenses are formed from monomer diffusion between
polymethyl methacrylate (PMMA) and polystyrene (PSTY) during the polymerization process, resulting in a copolymer
of the two homogeneous materials.
A process for fabricating spherical GRIN elements is discussed where copolymer axial GRIN blanks are thermally
compressed using spherical surface molds. This process curves the nominally-straight isoindicial surfaces of the axial
GRIN rod to be consistent with the shape found during optimization of the design. Once compressed, the spherical
blanks are diamond-turned for final surface figure and finish. Measurement of the GRIN profile is carried out using the
Schmidt immersion technique in a Mach-Zehnder interferometer. Tolerances specific to GRIN elements are identified
and determined to be readily achievable using the aforementioned manufacturing process.
A 40-deg full field-of-view high-performance eyepiece design utilizing a polymer spherical gradient-index (GRIN) optical element is presented. In the design process, the GRIN lens material is constrained to current manufacturing capabilities. Several spherical GRIN lens blanks are fabricated from a thermoformable axial GRIN polymethyl methacrylate polystyrene copolymer material. One is diamond turned into a lens for the eyepiece, and the additional blanks are used to characterize the fabrication process. The spherical GRIN profile is evaluated in the original design, and a tolerance analysis is provided.
Radial and spherical polymer gradient-index (GRIN) eyepiece designs are presented. The chromatic behavior of GRIN profiles is constrained to real material properties of a polymethyl methacrylate polystyrene copolymer gradient-index system. Single-element, two-element, and multielement eyepiece design configurations each demonstrate significant spot diameter and modulation transfer function performance improvements with the use of a GRIN element. A high-performance spherical GRIN eyepiece design, with 48-deg full field-of-view and 3% distortion, is compared to a similar homogeneous glass solution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.