When a telescope doesn’t reach a reasonable point spread function on the detector or detectable wavefront quality after initial assembly, a coarse phase alignment on-sky is crucial. Before utilizing a closed loop adaptive optics system, the observatory needs a strategy to actively align the telescope sufficiently for fine wavefront sensing (WFS). This paper presents a method of early-stage alignment using a stochastic parallel-gradient-descent (SPGD) algorithm which performs random perturbations to the optics of a three mirror anastigmat telescope design. The SPGD algorithm will drive the telescope until the wavefront error is below the acceptable range of the fine adaptive optics system to hand the telescope over. The focused spot size over the field of view is adopted as a feed parameter to SPGD algorithm and wavefront peak-to-valley error values are monitored to directly compare our mechanical capabilities to our alignment goal of diffraction limited imaging and fine wavefront sensing.
In order to reach contrast ratios of 10−8 and beyond, coronagraph testbeds need source optics that reliably emulate nearly-point-like starlight, with microfabricated pinholes being a compelling solution. To verify, a physical optics model of the Space Coronagraph Optical Bench (SCoOB) source optics, including a Finite-Difference Time-Domain (FDTD) pinhole simulation, was created. The results of the FDTD simulation show waveguide-like behavior of pinholes. We designed and fabricated microfabricated pinholes for SCoOB made from an aluminum overcoated silicon nitride film overhanging a silicon wafer substrate, and report characterization of the completed pinholes.
Future large space telescope missions for directly imaging exoplanets with internal coronagraphs will require picometer level low-order wavefront control to reach the 1e-10 starlight suppression required to detect terrestrial exoplanets. This paper aims to characterize the reflective Lyot-stop Low-Order Wavefront Sensor (LLOWFS) for the application where a transmissive focal plane mask is used, such as the Vector Vortex Coronagraph (VVC). This paper first defines the control requirements for such a mission based on the low-order tolerance of the VVC. The LLOWFS performance is then derived through optical simulation and compared to the requirements. The performance is calculated as a function of the target star brightness and aperture size and the final closed-loop stability is simulated using varying models for telescope pointing jitter and wavefront drift.
A major goal of proposed future space observatories, such as the Habitable World Observatory, is to directly image and characterize Earth-like planets around Sun-like stars to search for habitability signatures requiring the starlight suppression (contrast) of 10−10. One of the significant aspects affecting this contrast is the polarization aberrations generated from the reflection from mirror surfaces. The polarization aberrations are the phase-dependent amplitude and phase patterns originating from the Fresnel reflections of the mirror surfaces. These aberrations depend on the angle of incidence and coating parameters of the surface. This paper simulates the polarization aberrations for an on-axis and off-axis TMA telescope of a 6.5 m monolithic primary mirror. We analyze the polarization aberrations and their effect on the coronagraphic performance for eight different recipes of mirror coatings for Astronomical filter bands g-I: three single-layer metal coatings and five recipes of protective coatings. First, the Jones pupils are estimated for each coating and filter band using the polarization ray tracing in Zemax. Then, we propagate these Jones pupils through a Vector Vortex Coronagraph and Perfect Coronagraphs using hcipy, a physical optics-based simulation framework. The analysis shows that the two main polarization aberrations generated from the four mirrors are the retardance-defocus and retardance-tilt. The simulations also show that the coating plays a significant role in determining the strength of the aberrations. The bare/oxi-aluminum and Al+18nm LiF coating outperforms all the other coatings by one order of magnitude.
KEYWORDS: Space telescopes, Design and modelling, Telescopes, Observatories, Mirrors, James Webb Space Telescope, Space mirrors, Equipment, Astronomy, Coronagraphy
New development approaches, including launch vehicles and advances in sensors, computing, and software, have lowered the cost of entry into space, and have enabled a revolution in low-cost, high-risk Small Satellite (SmallSat) missions. To bring about a similar transformation in larger space telescopes, it is necessary to reconsider the full paradigm of space observatories. Here we will review the history of space telescope development and cost drivers, and describe an example conceptual design for a low cost 6.5 m optical telescope to enable new science when operated in space at room temperature. It uses a monolithic primary mirror of borosilicate glass, drawing on lessons and tools from decades of experience with ground-based observatories and instruments, as well as flagship space missions. It takes advantage, as do large launch vehicles, of increased computing power and space-worthy commercial electronics in low-cost active predictive control systems to maintain stability. We will describe an approach that incorporates science and trade study results that address driving requirements such as integration and testing costs, reliability, spacecraft jitter, and wavefront stability in this new risk-tolerant “LargeSat” context.
Extreme wavefront correction is required for coronagraphs on future space telescopes to reach 10-8 or better starlight suppression for the direct imaging and characterization of exoplanets in reflected light. Thus, a suite of wavefront sensors working in tandem with active and adaptive optics are used to achieve stable, nanometerlevel wavefront control over long observations. In order to verify wavefront control systems, comprehensive and accurate integrated models are needed. These should account for any sources of on-orbit error that may degrade performance past the limit imposed by photon noise. An integrated model of wavefront sensing and control for a space-based coronagraph was created using geometrical raytracing and physical optics propagation methods. Our model concept consists of an active telescope front end in addition to a charge-6 vector vortex coronagraph instrument. The telescope uses phase retrieval to guide primary mirror bending modes and secondary mirror position to control the wavefront error within tens of nanometers. The telescope model is dependent on raytracing to simulate these active optics corrections for compensating the wavefront errors caused by misalignments and thermal gradients in optical components. Entering the coronagraph, a self-coherent camera is used for focal plane wavefront sensing and digging the dark hole. We utilize physical optics propagation to model the coronagraphy’s sensitivity to mid and high-order wavefront errors caused by optical surface errors and pointing jitter. We use our integrated models to quantify expected starlight suppression versus wavefront sensor signal-to-noise ratio.
In the development of space-based large telescope systems, having the capability to perform active optics correction allows correcting wavefront aberrations caused by thermal perturbations so as to achieve diffraction-limited performance with relaxed stability requirements. We present a method of active optics correction used for current ground-based telescopes and simulate its effectiveness for a large honeycomb primary mirror in space. We use a finite-element model of the telescope to predict misalignments of the optics and primary mirror surface errors due to thermal gradients. These predicted surface error data are plugged into a Zemax ray trace analysis to produce wavefront error maps at the image plane. For our analysis, we assume that tilt, focus and coma in the wavefront error are corrected by adjusting the pointing of the telescope and moving the secondary mirror. Remaining mid- to high-order errors are corrected through physically bending the primary mirror with actuators. The influences of individual actuators are combined to form bending modes that increase in stiffness from low-order to high-order correction. The number of modes used is a variable that determines the accuracy of correction and magnitude of forces. We explore the degree of correction that can be made within limits on actuator force capacity and stress in the mirror. While remaining within these physical limits, we are able to demonstrate sub-25 nm RMS surface error over 30 hours of simulated data. The results from this simulation will be part of an end-to-end simulation of telescope optical performance that includes dynamic perturbations, wavefront sensing, and active control of alignment and mirror shape with realistic actuator performance.
Integrated optical models allow for accurate prediction of the as-built performance of an optical instrument. Optical models are typically composed of a separate ray trace and diffraction model to capture both the geometrical and physical regimes of light. These models are typically separated across both open-source and commercial software that don’t interface with each other directly. To bridge the gap between ray trace models and diffraction models, we have built an open-source optical analysis platform in Python called Poke that uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization. Poke operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. We present an introduction to using Poke, and highlight the capabilities of two new propagation modules that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that allows us to integrate physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems. Poke has been recently used to study the next generation of astronomical observatories, including the ground-based Extremely Large Telescopes (TMT, GMT, ELT) and a 6 meter space telescope (6MST) early concept for NASA’s Habitable Worlds Observatory.
Future NASA flagship missions will require the collecting area and resolving power of 6 meter or larger aperture telescopes. Due to limits in fairing size, highly accurate and stable segmented primary mirrors are desirable for achieving these apertures. Due to periodic discontinuities, hexagonally segmented mirrors have intrinsic diffraction grating-like structures, causing pronounced starburst point spread functions (PSFs). To mitigate unwanted image plane diffraction, we have designed and simulated a novel curved-edge segmentation method, called pinwheel segmentation, which more closely emulates a filled circular primary aperture. A parametric solution space for pinwheel segmentation has been developed and used to create in-house Python code which can be integrated with two optical propagation software: Physical Optics Propagation in Python (POPPY) and High Contrast Imaging in Python (HCIPy). Using HCIPy, we demonstrate optimized pinwheel design solutions which are less sensitive to realistic degradation scenarios on-orbit such as optical surface errors and beamwalk due to observatory pointing errors. Additionally, to demonstrate its potential benefits for high-contrast astrophysics, coronagraphy was compared using 6-meter class hexagonal and pinwheel segmented primary mirrors. Preliminary results demonstrate the advantages of alternative segmentation geometries when degraded PSFs are considered. The increased performance and robustness of pinwheel segmentation have the potential of significantly increasing science returns for future missions while reducing spacecraft operational constraints and cost.
The 2020 Decadal Survey on Astronomy and Astrophysics endorsed space-based high contrast imaging for the detection and characterization of habitable exoplanets as a key priority for the upcoming decade. To advance the maturity of starlight suppression techniques in a space-like environment, we are developing the Space Coronagraph Optical Bench (SCoOB) at the University of Arizona, a new thermal vacuum (TVAC) testbed based on the Coronagraphic Debris Exoplanet Exploring Payload (CDEEP), a SmallSat mission concept for high contrast imaging of circumstellar disks in scattered light. When completed, the testbed will combine a vector vortex coronagraph (VVC) with a Kilo-C microelectromechanical systems (MEMS) deformable mirror from Boston Micromachines Corp (BMC) and a self-coherent camera (SCC) with a goal of raw contrast surpassing 10−8 at visible wavelengths. In this proceedings, we report on our wavefront sensing and control efforts on this testbed in air, including the as-built performance of the optical system and the implementation of algorithms for focalplane wavefront control and digging dark holes (regions of high contrast in the focal plane) using electric field conjugation (EFC) and related algorithms.
The development of spaceborne coronagraphic technology is of paramount importance to the detection of habitable exoplanets in visible light. In space, coronagraphs are able to bypass the limitations imposed by the atmosphere to reach deeper contrasts and detect faint companions close to their host star. To effectively test this technology in a flight-like environment, a high-contrast imaging testbed must be designed for operation in a thermal vacuum (TVAC) chamber. A TVAC-compatible high-contrast imaging testbed is undergoing development at the University of Arizona inspired by a previous mission concept: The Coronagraphic Debris and Exoplanet Exploring Payload (CDEEP). The testbed currently operates at visible wavelengths and features a Boston Micromachines Kilo-C DM for wavefront control. Both a vector vortex coronagraph and a knife-edge Lyot coronagraph operating mode are under test. The optics will be mounted to a 1 × 2 meter pneumatically isolated optical bench designed to operate at 10−8 torr and achieve raw contrasts of 10−8 or better. The validation of our optical surface quality, alignment procedure, and first light results are presented. We also report on the status of the testbed’s integration in the vaccum chamber.
Exceptional wavefront correction is required for coronagraphs on future space observatories to reach 10-10 contrasts for direct imaging of rocky exoplanets around Sun-like stars. This picometer level wavefront correction must be stable over long periods of time and should be limited only by photon noise and wavefront sensing architecture. Thus, wavefront errors that arise from optical surface errors, thermal gradients, pointing induced beamwalk, and polarization aberration must be tightly controlled. A self-coherent camera (SCC) allows for image plane correction of mid-spatial frequency errors and a continuous means of dark-hole maintenance. By introducing a reference pinhole at the Lyot stop of a coronagraph, coherent starlight can be interfered with image plane speckles while leaving incoherent planet light untouched. A coronagraph model was created using High Contrast Imaging in Python (HCIPy) to simulate the SCC. Using these tools, realistic input disturbances can be introduced to analyze wavefront sensor performance. Using our model, we first demonstrate the necessity of a complimentary low-order wavefront sensor (LOWFS) to be paired with the SCC. Next, we discuss considerations when creating the modified Lyot stop of an SCC. Finally, a tolerance analysis of the SCC in the presence of optical surface errors, beamwalk due to pointing errors, photon noise, and detector read noise is presented.
OASIS (Orbiting Astronomical Satellite for Investigating Stellar Systems) is a space-based, MIDEX mission concept that employs a 14 meter inflatable aperture and cryogenic heterodyne receivers to perform high resolution (R<106) observations at terahertz frequencies. OASIS targets far-infrared transitions of H2O and its isotopologues, as well as HD and other molecular species from 660 to 63 μm that are otherwise obscured by the Earth’s atmosphere. OASIS will have <10x the collecting area and <4x the angular resolution of Herschel and complements the short wavelength capabilities of JWST. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans. OASIS represents a paradigm shift in the realization of large space apertures. Our paper will focus on how the development work for OASIS can be leveraged to realize a new generation of space telescopes.
The design of a CubeSat telescope for academic research purposes must balance complicated optical and structural designs with cost to maximize performance in extreme environments. Increasing the CubeSat size (eg. 6U to 12U) will increase the potential optical performance, but the cost will increase in kind. Recent developments in diamond-turning have increased the accessibility of aspheric aluminum mirrors, enabling a cost-effective regime of well-corrected nanosatellite telescopes. We present an all-aluminum versatile CubeSat telescope (VCT) platform that optimizes performance, cost, and schedule at a relatively large 95 mm aperture and 0.4 degree diffraction limited full field of view stablized by MEMS fine-steering modules. This study features a new design tool that permits easy characterization of performance degradation as a function of spacecraft thermal and structural disturbances. We will present details including the trade between on- and off-axis implementations of the VCT, thermal stability requirements and finite-element analysis, and launch survival considerations. The VCT is suitable for a range of CubeSat borne applications, which provides an affordable platform for astronomy, Earth-imaging, and optical communications.
Quantitative measurements of lung microvessels would benefit characterization of vascular function and remodeling in pulmonary vascular diseases. Previous studies have evaluated the utility of micro-CT in conjunction with exogenous radiopaque silicone polymer injection (Microfil) to visualize vascular networks in whole organs. However, micro-CT resolutions are limited and Microfil perfusion may lead to incomplete vessel filling and vessel rupture. Optical coherence microscopy (OCM) enables depth-resolved volumetric imaging of tissue scattering with micron isotropic resolution and may be an alternative to micro-CT. Here, we present a novel method for quantitative measurements of lung vasculature using multi-volumetric OCM. Murine lungs were perfused with scattering contrast, fixed, and optically cleared. The lungs were then imaged using a custom-built OCM system with overlapping volumetric datasets and mosaicked in post-processing. OCM data was collected on a custom-built SD-OCT system and integrated with a control system to synchronize OCM data acquisition/archiving with three-axis motorized stages for multi-volumetric mosaicking. A Bessel illumination scheme was used to extend the Rayleigh range and depth-of-field by ~40% while maintaining high lateral resolution. A cleared lung lobe was imaged with 840 OCM volumes (7x12x10) that were acquired over an 8x13x1.43 mm slab with ~2 μm isotropic resolution. The resulting data was segmented in post-processing to quantify vessel diameters. We believe this proof-of-concept demonstrates the utility of our OCM and tissue preparation approach, which can be extended to compare microvasculature changes in entire lung lobes in animal models of pulmonary disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.