With the development and expansion of the internet of things, many scientific and engineering instruments are leaving the benchtop restriction and moving on to provide on-site detection. On-site detection requires a complete miniaturization of a benchtop system while maintaining a similar performance with respect to the analyte detection sensitivity. In addition, due to the mobile nature, utilizing a battery source is required. Here we present a portable loop-medicated isothermal amplification detection system for on-site detection and amplification of target analyte via fluorescence detection. The digital twin design incorporates three major components: an isothermal heating chamber, light-tight enclosure for sample insert, and fluorescence imaging system via micro-controllers. The isothermal heating chamber was designed with Peltier heater to provide small form factor accurate temperature control. For light-tight enclosure is a 3D printed device that allows DNA samples to be inserted and fluorescent images to be taken within the chamber. Lastly, fluorescent imaging system operates with a stand-alone camera connected to an Arduino micro-controller. Excitation is provided by blue colored LED and emission is detected via long-pass filter that matches the emission spectrum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.