Optically pumped semiconductor disk lasers (SDLs) are presented with emphasis on wafer bonding InP-based active regions with GaAs-based distributed Bragg reflectors (DBRs) and reducing the number of required layer pairs in the DBR. The wafer bonding is performed at a relatively low temperature of 200 °C utilizing transparent intermediate bonding layers. The reflectivity of the semiconductor DBR section is enhanced by finishing the DBR with a thin low refractive index layer and a highly reflecting metal layer. Such a design enables considerably thinner mirror structures than the conventional design, where the semiconductor DBR is finished with mere metal layers. In addition, a 90 nm thick Al2O3 layer is shown to produce negligible increase in the thermal resistance of the SDL. Furthermore, a flip-chip SDL with a GaAs/AlAs-Al2O3-Al mirror is demonstrated with watt-level output power at the wavelength of 1.32 μm. The properties and future improvement issues for flip-chip SDLs emitting at 1.3–1.6 μm are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.