The article is dedicated to advancing technologies in chaotic optical communication and investigating chaotic laser generation in measurement systems and instruments. It conducts an analysis of the informational potential of chaotic signals in the optical range and explores the feasibility of implementing chaotic dynamics in lasers. It is demonstrated that among the current challenges are precision and stable generation of chaotic laser modes, as well as precision and stable synchronization of chaotic laser generators. The definition of chaotic modes is proposed as a set of characteristic types of chaotic oscillations that are stable, distinguishable, and reproducible within an oscillatory system, along with a method for estimating the number of modes and their designation. A method for modulating pump energy using a Chua generator is suggested. Additionally, a model for precision control of chaotic laser generation is proposed, allowing for the generation of chaotic laser modes with the ability to measure and control laser emission parameters and chaotic dynamics based on monitoring small changes in control parameters and influencing factors.
The method of resolving power enhancement of analog-digital conversion path of jitter analyzers in fiber-optical networks is suggested in the research. The analog-digital path is designed on the basis of the principle of phase-plane correction of dynamic errors and is characterized by high resolving power.
The ultrasonic method for measuring the flow rate of flowing environment based on the use of the amplitude-frequency modulation scheme is presented. The mathematical model of the ultrasonic converter of the flowing environment flow rate is proposed.
The paper deals with the specific nature of assembly processes in instrument-making and considers the current state of development of computer-aided design technology assembly and their suitability for conditions of instrument making production. In addition, we develop the mathematical model of the assembly product in instrument-making taking into account complexity and specificity of the assembly, adjustment and test work. We propose the method of forming the model describing the structure of the assembly product which represents it as a hierarchical system of interconnected structural elements. The proposed model is integrated in the CAD system. It is informative and suitable for the process of automated assembly design. Relying on the proposed method describing the product structure we develop the software AsCAM containing the procedures and database design and technology information. This software can effectively solve the problem of technology preparation of small-scale assembly plant in construction of the circuit assembly of the product and flow diagram of assembly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.