Proceedings Article | 30 May 2003
KEYWORDS: Visualization, Cameras, 3D visualizations, Control systems, Digital photography, Photography, Imaging systems, Image processing, Digital video recorders, Digital cameras
As technology advances, new and innovative ways of viewing and visualizing the human body are developed. Medicine has benefited greatly from imaging modalities that provide ways for us to visualize anatomy that cannot be seen without invasive procedures. As long as medical procedures include invasive operations, students of anatomy will benefit from the cadaveric dissection experience. Teaching proper technique for dissection of human cadavers is a challenging task for anatomy educators. Traditional methods, which have not changed significantly for centuries, include the use of textbooks and pictures to show students what a particular dissection specimen should look like. The ability to properly carry out such highly visual and interactive procedures is significantly constrained by these methods. The student receives a single view and has no idea how the procedure was carried out. The Department of Anatomy at Mayo Medical School recently built a new, state-of-the-art teaching laboratory, including data ports and power sources above each dissection table. This feature allows students to access the Mayo intranet from a computer mounted on each table. The vision of the Department of Anatomy is to replace all paper-based resources in the laboratory (dissection manuals, anatomic atlases, etc.) with a more dynamic medium that will direct students in dissection and in learning human anatomy. Part of that vision includes the use of interactive 3-D visualization technology. The Biomedical Imaging Resource (BIR) at Mayo Clinic has developed, in collaboration with the Department of Anatomy, a system for the control and capture of high resolution digital photographic sequences which can be used to create 3-D interactive visualizations of specimen dissections. The primary components of the system include a Kodak DC290 digital camera, a motorized controller rig from Kaidan, a PC, and custom software to synchronize and control the components. For each dissection procedure, the images are captured automatically, and then processed to generate a Quicktime VR sequence, which permits users to view an object from multiple angles by rotating it on the screen. This provides 3-D visualizations of anatomy for students without the need for special '3-D glasses' that would be impractical to use in a laboratory setting. In addition, a digital video camera may be mounted on the rig for capturing video recordings of selected dissection procedures being carried out by expert anatomists for playback by the students. Anatomists from the Department of Anatomy at Mayo have captured several sets of dissection sequences and processed them into Quicktime VR sequences. The students are able to look at these specimens from multiple angles using this VR technology. In addition, the student may zoom in to obtain high-resolution close-up views of the specimen. They may interactively view the specimen at varying stages of dissection, providing a way to quickly and intuitively navigate through the layers of tissue. Electronic media has begun to impact all areas of education, but a 3-D interactive visualization of specimen dissections in the laboratory environment is a unique and powerful means of teaching anatomy. When fully implemented, anatomy education will be enhanced significantly by comparison to traditional methods.