In this paper, we utilize the fin-shaped channel to form the AlGaN/GaN HEMTs which can be considered as “Fin- HEMTs” to adjust the threshold voltage (VTH) toward positive value. The gate metal here is deposited directly on the AlGaN/GaN semiconductor to form the Schottky contact. Although the fin-widths are in the level of micron-scale, the shifts of VTH are still observable and the VTH becomes more positive with the smaller fin width. This is attributed to the assistant of the side-gate control which can be regarded as the depletion layer formed by Schottky contact at side-gate will deplete the 2DEG in the channel. Therefore, with the smaller fin width, the channel can be pinched off faster which is similar to the double gate MESFETs. The VTH of planar device is shifted from -3.81 V to -3.37 V with 2-μm-fin-width. On the other hand, unlike to carrier transportation in the conventional FinFET with nano-scale fin width which is dominated by the surface scattering, our Fin-HEMTs with micron-scale fin width exhibit higher drain current than planar device and this is because of the smaller thermal resistance (RTH) for the fin-HEMT. We extract the RTH by varying the measured temperature and the RTH of the device with 4-μm-fin-width and planar device is 58.5 K/W and 249.5 K/W, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.