The survival rate for renal cancer patients is closely related to the surgical margin status. Thus, accurate and rapid detection of renal cancer is needed. Here, we integrated photoacoustic tomography (PAT) with ultrasound imaging in a single system, which achieved tissue imaging depth about 3 mm and imaging speed about 3.5 cm2/min. We used the wavelength at 1064 nm and 1197 nm to map both blood and lipid distribution in 16 normal and 17 clear cell renal cell carcinoma (ccRCC) tissues, collected from nephrectomy. Our results indicated that the photoacoustic signal from lipids, but not blood, was significantly higher in ccRCC tissues than that in normal tissues. Moreover, based on the quantification of lipid area ratio, we were able to differentiate normal and ccRCC with 100% sensitivity, 80% specificity, and area under receiver operating characteristic curve of 0.95. Our findings show promise of using multimodal PAT for intraoperative ccRCC detection.
Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free spectroscopic imaging, we performed quantitative analysis of lipogenesis at single-cell level in human clear cell renal cell carcinoma (ccRCC), which accounts for about 90% kidney cancers. Our hyperspectral stimulated Raman scattering (SRS) imaging data revealed an aberrant accumulation of lipid droplets in human clear cell renal cell carcinoma (ccRCC), but no detectable lipid droplets in normal or benign kidney tissues. We also found that such lipid accumulation was significantly higher in low grade (Furhman Grade≤2) ccRCC compared that in high grade (Furhman Grade≥3) ccRCC, and was correlated well with the prognosis of ccRCC. Moreover, cholesteryl ester is the dominant form of lipids accumulated in ccRCC. Besides, the unsaturation level of lipids was significantly higher in high grade ccRCC compared to low grade ccRCC. Furthermore, depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth and metastasis in mouse xenograft and orthotopic models, with negligible toxicity. These findings herald the potential of using lipid accumulation as a marker for diagnosis of human ccRCC and open a new way of treating aggressive human ccRCC by targeting the altered lipid metabolism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.