In this paper, we sought to find a method to detect the Inner Segment /Outer Segment (IS/OS)disruption region automatically. A novel support vector machine (SVM) based method was proposed for IS/OS disruption detection. The method includes two parts: training and testing. During the training phase, 7 features from the region around the fovea are calculated. Support vector machine (SVM) is utilized as the classification method. In the testing phase, the training model derived is utilized to classify the disruption and non-disruption region of the IS/OS, and calculate the accuracy separately. The proposed method was tested on 9 patients' SD-OCT images using leave-one-out strategy. The preliminary results demonstrated the feasibility and efficiency of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.