This work presents a miniaturized laser module featuring an optical output power of more than 14Win continuous wave operation. Simultaneously, a beam quality factor of less than 2 is reached at the operating power. The laser module layout is based on the use of tapered diode lasers featuring wavelength stabilization by a monolithic distributed Bragg grating. Such a single laser source achieves a reliable output power in the order of 8W in continuous wave mode at a wavelength of 980nm [1]. To enhance the output power while maintaining the beam quality of the single emitters, two laser beams were combined by the use of polarization coupling. The use of custom designed beam couplers is necessary to combine the given radiation intensities. A thin film polarization optic, adapted to the output wavelength was used. All optical components where designed to be housed inside of a module with a footprint of 58 x 34mm2. Due to the close spatial vicinity of the laser sources, thermal simulations were carried out to avoid thermal crosstalk and ensure stable laser operation. The modules high beam quality enables pumping of solid state lasers and amplifiers even without challenging optical pumping geometries.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.