The OSU/ESL GPR systems have been applied to the detection and classification of buried unexploded ordnance (UXO) for years. It has evolved from an impulse and single-polarization (cross-polarization) system utilizing complex natural resonance (CNR) feature to the recent step-frequency and fully polarimetric system utilizing CNR, polarization and scattering features. Significant progresses in measurement techniques, feature extraction algorithms and classification rules have been made during the past three years under the support US DoD ESTCP program. These important progresses were motivated by field data collected at government test sites such as Tyndall AFB (1999), Blossom Point (2000) and Jefferson Proving Ground (2001). This paper briefly describes these progresses and the motivations behind them.
This paper presents a non-destructive procedure to determine the surface hardness of the soil using an elevated radar system equipped with a focused-beam antenna. The complete system consists ofthe focused beam antenna, a network analyzer, a computer, and control software that process the data. The surface dielectric constant calculated from the radar data based on reflection measurement was compared with the surface hardness measured directly from a homemade hardness meter. A sand pit was used as test bed that was frozen by liquid nitrogen. It was found that there is a simple and direct relationship between the surface hardness and the measured dielectric constant in our case.
A novel broad bandwidth dual-polarization GPR antenna was also developed for collecting fully polarimetric data over a wide frequency range (20 MHz to approximately 800 MHz). This new design was improved from its single-polarization version introduced by Chen (1997). The new design features improved stability and directivity over conventional surface-based GPR antennas. Such antenna is currently applied to discriminate buried UXO's from other false alarm reduction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.