Medical augmented reality has been actively studied for decades and many methods have been proposed to revolutionize clinical procedures. One example is the camera augmented mobile C-arm (CAMC), which provides a real-time video augmentation onto medical images by rigidly mounting and calibrating a camera to the imaging device. Since then, several CAMC variations have been suggested by calibrating 2D/3D cameras, trackers, and more recently a Microsoft HoloLens to the C-arm. Different calibration methods have been applied to establish the correspondence between the rigidly attached sensor and the imaging device. A crucial step for these methods is the acquisition of X-Ray images or 3D reconstruction volumes; therefore, requiring the emission of ionizing radiation. In this work, we analyze the mechanical motion of the device and propose an alternative method to calibrate sensors to the C-arm without emitting any radiation. Given a sensor is rigidly attached to the device, we introduce an extended pivot calibration concept to compute the fixed translation from the sensor to the C-arm rotation center. The fixed relationship between the sensor and rotation center can be formulated as a pivot calibration problem with the pivot point moving on a locus. Our method exploits the rigid C-arm motion describing a Torus surface to solve this calibration problem. We explain the geometry of the C-arm motion and its relation to the attached sensor, propose a calibration algorithm and show its robustness against noise, as well as trajectory and observed pose density by computer simulations. We discuss this geometric-based formulation and its potential extensions to different C-arm applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.