Semiconductor optical waveguides have been the subject of intense study as both fundamental objects of study, as well as a path to photonic integration. In this talk I will focus on the nonlinear evolution of optical solitons in photonic crystal waveguides made of semiconductor materials. The ability to independently tune the dispersion and the nonlinearity in photonic crystal waveguides enables the examination of completely different nonlinear regimes in the same platform. I will describe experimental efforts utilizing time-resolved measurements to reveal a number of physical phenomena unique to solitons in a free carrier medium. The experiments are supported by analytic and numerical models providing a deeper insight into the physical scaling of these processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.