KEYWORDS: Digital signal processing, Image segmentation, Optical character recognition, Computer programming, Detection and tracking algorithms, Image processing algorithms and systems, Optical inspection, Animal model studies, Systems modeling, Optimization (mathematics), Object recognition
In this paper we propose a dynamic programming solution to the template-based recognition task in OCR case. We formulate a problem of optimal position search for complex objects consisting of parts forming a sequence. We limit the distance between every two adjacent elements with predefined upper and lower thresholds. We choose the sum of penalties for each part in given position as a function to be minimized. We show that such a choice of restrictions allows a faster algorithm to be used than the one for the general form of deformation penalties. We named this algorithm Dynamic Squeezeboxes Packing (DSP) and applied it to solve the two OCR problems: text fields extraction from an image of document Visual Inspection Zone (VIZ) and license plate segmentation. The quality and the performance of resulting solutions were experimentally proved to meet the requirements of the state-of-the-art industrial recognition systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.