In this research, at first, several general analytical methods such as global matrix method (GMM), transfer matrix method (TMM) and stiffness matrix method (SMM) were employed to predict the guided waves in composites. It was found that GMM is more stable over other methods. However, GMM has missing roots at high frequency. Other methods such TMM provides spurious roots at high frequency and SMM has some missing roots at low frequency despite having computationally efficient. Therefore, an improved analytical method was implemented to calculate wavenumbers corresponding to propagating, evanescent and complex guided wave mode of composite materials. The evanescent and complex wavenumber guided wave modes are very important in studying the interaction between the guided waves and composite damage. The generic analytical method may not work efficiently for finding threedimensional complex wavenumber, frequency roots in composite materials. Christoffel’s equation for composite lamina was used to obtain the eigenvalues and eigenvectors. The eigenvalues and eigenvectors were used to calculate state vectors and field matrix. In this improved analytical method, the exponential part containing wavenumber of the field matrix is expanded as Taylor series expansion with respect to initial wavenumber guess. Then the problem becomes a polynomial eigenvalue problem. Upon solving the eigenvalue problem, it provides wavenumber, frequency solutions for propagating, evanescent and complex guided wave modes. The advantage of the current method is that it is computationally efficient and can provide exact stress mode shapes. As a proof case, the solution was developed first for isotropic (aluminum) materials, and the results were compared with the available analytical solution of the Rayleigh- Lamb equation. Then the solution was extended for unidirectional CFRP composites.
The manufacturing process of carbon fiber reinforced polymer (CFRP) composite structures can introduce many characteristic defects and flaws such as fiber misorientation, fiber waviness and wrinkling. Therefore, it becomes increasingly important to detect the presence of these defects at the earliest stages of development. Eddy current testing (ECT) is a nondestructive inspection (NDI) technique which has been proven quite effective in metallic structures. However, NDI of composite structures has mainly relied on other methods such as ultrasonics and X-ray to name a few, and not much on ECT. In this paper, we explore the possibility of using ECT in NDI of CFRP composites. We base our research on the fact that the CFRP displays some low-level electric conductivity due to the inherent conductivity of the carbon fibers. This low-level conductivity may permit eddy-current pathways that can be exploited for NDI detection. An invention disclosure describing our high-frequency ECT method is being progressed. We use multiphysics FEM simulation to simulate the detection of various types of manufacturing flaws and operational damage in CFRP composites such as fiber misorientation; waviness; wrinkling, etc. ECT experiments were conducted on CFRP specimens with manufacturing flaws using the Eddyfi Reddy eddy current array (ECA) system.
A novel method is proposed in this paper to extract acoustic emission (AE) source using Helmholtz potentials approach. In order to characterize the source in terms of potentials the underlying physics is to detect the AE signals and then develop an inverse algorithm to characterize the source. According to the new concept, the source can be characterized it provides the excitation potential information from the crack and that can be used to diagnose the crack (crack type and crack growth etc.). An AE experiment was designed to measure the acoustic emissions from the fatigue crack growth. A test specimen was made of 1 mm thick 304-steel material. A small hole (1 mm diameter) was drilled at the center of the specimen to initiate the fatigue crack. The specimen was subjected to the cyclic loadings by using the hydraulic MTS machine. AE waveforms are generated by convolutions of AE source functions, plate transfer functions. An inverse algorithm was developed to characterize the source of AE signal. AE signal analysis are done to determine AE source function using deconvolution process.
Structural health monitoring (SHM) is in urgent need and must be integrated into the nuclear-spent fuel storage systems to guarantee the safe operation. The dry cask storage system (DCSS) is such storage facility, which is licensed for temporary storage for nuclear-spent fuel at the independent spent fuel storage installations (ISFSIs) for certain predetermined period of time. Gamma radiation is one of the major radiation sources near DCSS. Therefore, a detailed experimental investigation was completed on the gamma radiation endurance of piezoelectric wafer active sensors (PWAS) transducers for SHM applications to the DCSS system. The irradiation test was done in a Co-60 gamma irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 40.7 kGy gamma radiation. Total radiation dose was achieved in two different radiation dose rates: (a) slower radiation rate at 0.1 kGy/hr for 20 hours (b) accelerated radiation rate at 1.233 kGy/hr for 32 hours. The total cumulative radiation dose of 40.7 kGy is equivalent to 45 years of operation in DCSS system. Electro-mechanical impedance and admittance (EMIA) signatures and electrical capacitance were measured to evaluate the PWAS performance after each gamma radiation exposure. The change in resonance frequency of PZT-PWAS transducer for both in-plane and thickness mode was observed. The GaPO4-PWAS EMIA spectra do not show a significant shift in resonance frequency after gamma irradiation exposure. Radiation endurance of new high-temperature HPZ-HiT PWAS transducer was also evaluated. The HPZ-HiT transducers were exposed to gamma radiation at 1.233 kGy/hr for 160 hours with 80 hours interval. Therefore, the total accumulated gamma radiation dose is 184 kGy. No significant change in impedance spectra was observed due to gamma radiation exposure.
Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.
There is considerable demand for structural health monitoring (SHM) at locations where there are substantial radiation fields such as nuclear reactor components, dry cask storage canister, irradiated fuel assemblies, etc. Piezoelectric wafer active sensors (PWAS) have been emerged as one of the major SHM sensing technologies. In order to use PWAS to perform SHM in nuclear environment, radiation influence on sensor and sensing capability needs to be investigated to assure the reliability of the PWAS based method. Radiation may cause degradation or even complete failure of sensors. Gamma radiation is one of the major radiation sources near the nuclear source. Therefore, experimental investigation was completed on the gamma radiation endurance of piezoelectric sensors. The irradiation test was done in a Co-60 Gamma Irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS were exposed under gamma radiation at 100 Gy/hr rate for 20 hours. Electro-mechanical (E/M) admittance signatures and electrical capacitance were measured to evaluate the PWAS performance before and after every 4 hours exposure to gamma radiation. PWAS were kept at room temperature for 6 days after each 4 hours radiation exposure to investigate the effect of time on PWAS by gamma radiation. It was found that, PZT-PWAS show variation in resonance frequency for both in plane and thickness mode E/M admittance. Where, the changes in resonance amplitudes are larger for PZT-PWAS. GaPO4-PWAS E/M impedance/admittance spectra don’t show any reasonable change after gamma irradiation. A degradation behavior of electrical properties in the PZT-PWAS was observed. Capacitance value of PZT-PWAS decreases from 3.2 nF to 3.07 nF after exposing to gamma radiation for 20 hours at 100Gy/hour. This degradation behavior of electrical properties may be explained by the pinning of domain walls by some radiation induced effect. GaPO4-PWAS doesn’t show reasonable degradation in electrical properties. GaPO4 has good radiation endurance, although amplitude sensitivity is relatively low.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.