The Southern Connecticut Stellar Interferometer (SCSI) is an intensity interferometer that is designed to use correlated photon arrival times to determine the geometry of stars. Originally a low-cost, two-telescope instrument that used a 1-pixel single-photon avalanche diode (SPAD) detector at the focal plane of each telescope to record photon events, it is now being upgraded to include a third telescope. This will allow for the simultaneous detection of the photon correlation at three baselines, and thus the ability to map out the two-dimensional geometry of the source much more efficiently than with the two-telescope arrangement. Recent papers in the literature suggest that it may be possible to derive phase information in the Fourier domain from such triple correlations for the brightest stars, potentially giving SCSI an imaging capability. Prior to investigating this possibility, steps must be taken to maximize the observing efficiency of the SCSI. We present here our latest efforts in achieving better pointing, tracking, and collimation with our telescopes, and we discuss our first modeling results of the three-telescope situation in order to understand under what conditions the upgraded SCSI could retrieve imaging information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.