Optoacoustic (OA) imaging is a rising biomedical technique that has attracted much interest over the last 15 years. This technique permits to visualize the internal soft tissues in depth by using short laser pulses, able to generate ultrasonic signals in a large frequency range. It combines the high contrast of optical imaging with the high resolution of ultrasound systems. The OA signals detected from the whole surface of the body serve to reconstruct in detail the image of the internal tissues, where the absorbed optical energy distribution outlines the regions of interest. In fact, the use of contrast agents could improve the detection of growing anomalies in soft tissues, such as carcinomas. This work proposes the use of double-walled carbon nanotubes (DWCNTs) as a potential nontoxic biodegradable contrast agent applicable in OA to reveal the presence of malignant in-depth tissues in near infrared (NIR) wavelength range (0.75–1.4 μm), where the biological tissues are fairly transparent to optical radiation. A dual-wavelength (870 and 905 nm) OA system is presented, based on arrays of high power diode lasers (HPDLs) that generate ultrasound signals from a DWCNT solution embedded within a biological phantom. The OA signals generated by DWCNTs are compared with those obtained using black ink, considered to be a very good absorber at these wavelengths. The experiments prove that DWCNTs are a potential contrast agent for optoacoustic spectroscopy (OAS).
KEYWORDS: Semiconductor lasers, Absorption, Tissues, Carbon nanotubes, Signal to noise ratio, High power lasers, Scattering, Biomedical optics, Ultrasonography, Signal generators
During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75–1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode–based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.