In this work, a chirped volume Bragg grating (CVBG) with over 40 nm high efficiency broadband spectra for pulse compression of near 100 fs was studied. Based on the fundamental matrix method, the effects of various structural parameters of CVBG on its diffraction characteristics were analyzed and then a design of broadband and high efficiency CVBG was proposed. Afterward, the monolithic CVBG was utilized to stretch and recompress a 100 fs pulse with a center wavelength of 1030 nm. The result shows this device has a high diffraction efficiency (84%) and a fine reciprocity. For the fabrication of large-size broadband CVBGs, double cylindrical wave holographic interference in photo-thermorefractive (PTR) glass was applied to achieve a wide range uniform and stable light field, which could greatly minimize unnecessary space chirp.
In a previous study, the temperature-rise of a spectral beam combining grating was analyzed theoretically and experimentally. It was concluded that the temperature of a grating can be effectively reduced by increasing the substrate thickness or by using a substrate material with higher thermal conductivity. In this study, yttrium aluminum garnet (YAG) was used as the substrate material to fabricate a spectral beam combining grating. The temperature, distortion, and far-field beam quality of the YAG-substrate-grating were analyzed theoretically and experimentally. It is concluded that, compared with the traditional quartz-substrate-grating, not only can the YAG-substrate-MDG withstand higher power, but the beam quality of the diffraction laser is also better.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.