In this experiment, the optical characteristics of porous silicon microcavities (PSM) are studied using spectroscopy analysis. Porous silicon microcavities were fabricated by the anodization of boron doped P-type (111) single crystal wafers in hydrofluoric acid/ethanol (HF/EtOH) electrolytes. The samples were prepared at room temperature under different fabrication conditions in order to obtain different physical parameters such as porosity (p), thickness (d), and pore geometry. The current density was varied from 25mA/cm2 to 100mA/cm2 and the HF/EtOH concentration was varied from 1:1 to 1:4. The transmission spectra of the prepared samples were investigated over the range of 800 nm to 2400 nm with a period of 2 seconds. The fabricated PSM structures were investigated using SEM and their physical properties were analyzed as a function of the fabrication parameters. The transmission spectra of the prepared samples were compared to the transmission spectra of the reference bulk silicon wafer. We observed that the refractive index of the (PSM) was lower than that of bulk silicon, and it decreased with increasing porosity (p). Based on the experimental spectra of the PSM structure, we report a spectral density function relating the physical properties of the surface and the effective dielectric function.
Faculty members involved in the optics program in the Department of Electrical and Computer Engineering at Syracuse University have diverse research interests. We use this diversity in our teaching methods/materials to educate future engineers. Our instructional methods, both classroom and laboratory, are designed to provide physical insight of optical devices and systems. Our electro-optics laboratory is equipped with three optical benches, four helium neon lasers, a Nd: YAG laser, optical peripheral equipment, a variety of acousto-optic signal/image processing set up, and related electronic equipment of reasonable sophistication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.