The presence of dielectric charging in a switch causes stiction and drift in pull-in voltage. A design to alleviate charging issues for RF MEMS switches is proposed. An RF MEMS capacitive switch has been fabricated and characterized. Measured pull-in of the switch is <20 V and pull-up voltage is 17 V with a switching time of 78 μs. Insertion loss and isolation of the switch are measured by varying RF power from 0 to 15 dBm at room temperature. Insertion loss and isolation of the switch are better than 0.1 and 17 dB, respectively. Resonant frequency of the device is 8.4 kHz. The switch has completed 600 million cycles.
The design, fabrication, and mechanical characterization of a compact-reduced stiction see-saw radio frequency MEMS switch are presented. The switch has a resonance frequency of 9.8 kHz with a corresponding switching speed of 46 μs. Use of a floating metal layer and optimal contact area ensures reduced stiction and smaller capacitive leakage. Overall size of the switch is 0.535 (0.50×1.070) mm2. Reduction in up-state capacitance also results in improvement in self-actuation voltage, insertion, and return loss. The optimized topology has improved the stiction and power handling of the switch.
A comparison of dry and wet release methods for surface micromachining of metallic structures, such as RF MEMS switches, test structures, bridges, and cantilevers is presented. The dry release process is optimized by varying the concentration of O 2 and CF 4 plasma and RF power. The plasma ashing of the sacrificial layer typically results in damage to metallic structures or stress-related deformation due to rise in temperature (>80°C ). A wet release process using critical point drying (CPD) has been investigated to realize gold-electroplated structures with reduced residual stress. The CPD, being a low-temperature (31.1°C) process, is more suitable for compliant structures without any deformation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.