PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F2) techniques and technologies for future ESA missions. The mission includes two spacecrafts. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL (Centre Spatial de Liège) responsibility. The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540;570nm]. The external occulter being located at ~ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed. CSL is responsible for the optical design, integration, testing and validation of the complete ASPIICS instrument. The instrument qualification model (QM) underwent a full qualification campaign at CSL, providing confidence and assuring the performances of the coronagraph design. During the year 2021, the flight model (FM) was also successfully integrated and tested at CSL. The calibration performed at INAF during September 2021 was the last step to achieve before the instrument delivery to ESA end of 2021. This paper will present the results of the qualification campaign, the optical performances of the flight instrument and the calibration campaign. Several challenges were faced during these campaigns, amongst which are detailed the alignment of the focal plane, the alignment measurement during environmental testing and setup constraints during the calibration. The successful validation of the instrument and its final acceptance is demonstrated.
Metis is a multi-wavelength coronagraph onboard the European Space Agency (ESA) Solar Orbiter mission. The instrument features an innovative instrument design conceived for simultaneously imaging the Sun's corona in the visible and ultraviolet range. The Metis visible channel employs broad-band, polarized imaging of the visible K-corona, while the UV one uses narrow-band imaging at the HI Ly , i.e. 121.6 nm. During the commissioning different acquisitions and activities, performed with both the Metis channels, have been carried out with the aim to check the functioning and the performance of the instrument. In particular, specific observations of stars have been devised to assess the optical alignment of the telescope and to derive the instrument optical parameters such as focal length, PSF and possibly check the optical distortion and the vignetting function. In this paper, the preliminary results obtained for the PSF of both channels and the determination of the scale for the visible channel will be described and discussed. The in-flight obtained data will be compared to those obtained on-ground during the calibration campaign.
Ion Beam Figuring (IBF) has been used for nearly 20 years by several laboratories and companies as a highly deterministic method of final processing of ultra-precision optical elements. Nowadays, requirements for high precision optics demand to have full control over the ion beam, which includes both the ion beam profile and intensity. Electrostatic focusing using an Einzel lens setup provides a simple option to control the ion beam shape by changing voltage. This experimental study investigates the early stage development of an Einzel lens used to control an RF40 ion source. First results demonstrate the possibility to use an Einzel lens to control the ion beam profile and indicate possible future challenges this technology has to overcome when used in IBF machines.
PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F²) techniques and technologies for future ESA missions. The mission includes two spacecraft. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL responsibility.
The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540;570nm]. The external occulter being located at ~ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed.
This paper will present the straylight model and analyses carried out by CSL. A first specificity of the analysis is that the scene on the useful Field of View (FOV) is the solar corona which has a brightness dynamic range as high as 103 between the close corona, close to 1 solar radius (Rsun), and the “distant” corona around 3RSun. The specifications are very stringent for this type of instrument. A consensus was found and will be presented regarding the expected straylight within the FOV. It will also be shown that to achieve realistic estimations it is required to take into account the exact location of the created straylight as well as the entrance field.
The second specificity that had to be analyzed is that the diffraction from the solar disk by the external occulter enters the instrument un-obstructed until the internal occulter, and with a brightness 100 times higher than the close corona (~1RSun) brightness. The simulation of this diffraction as well as its propagation inside the ASPIICS telescope creating additional straylight, had to be carefully established in order to give realistic results of its impact on the performances while being actually possible to compute.
This paper presents the recent achievements in the development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), a solar coronagraph that is the primary payload of ESA’s formation flying in-orbit demonstration mission PROBA-3. The PROBA-3 Coronagraph System is designed as a classical externally occulted Lyot coronagraph but it takes advantage of the opportunity to place the 1.4 meter wide external occulter on a companion spacecraft, about 150m apart, to perform high resolution imaging of the inner corona of the Sun as close as ~1.1 solar radii. Besides providing scientific data, ASPIICS is also equipped with sensors for providing relevant navigation data to the Formation Flying GNC system. This paper is reviewing the recent development status of the ASPIICS instrument as it passed CDR, following detailed design of all the sub-systems and testing of STM and various Breadboard models.
The paper describes the wavefront error measurements of the concave ellipsoidal mirrors M1 and M2, of the concave spherical mirror M0 and of the flat interferential filter IF of the Metis coronagraph. Metis is an inverted occultation coronagraph on board of the ESA Solar Orbiter mission providing a broad-band imaging of the full corona in linearly polarized visible-light (580 - 640 nm) and a narrow-band imaging of the full corona in the ultraviolet Lyman α (121.6 nm). Metis will observe the solar outer atmosphere from a close distance to the Sun as 0.28 A.U. and from up to 35deg out-of-ecliptic. The measurements of wavefront error of the mirrors and of the interferential filter of Metis have been performed in a ISO5 clean room both at component level and at assembly level minimizing, during the integration, the stress introduced by the mechanical hardware. The wavefront error measurements have been performed with a digital interferometer for mirrors M0, M1 and M2 and with a Shack-Hartmann wavefront sensor for the interferential filter.
The presented paper aims to theoretically analyze the possibilities, advantages and drawbacks of standard methods used for the assessment of optical surface defects (the so-called Scratch and Dig analysis). Based on the acquired knowledge, we design and apply a process of SaD analysis suitable for the evaluation of optical surfaces of mirrors of the space coronagraph Metis, whose manufacturing was successfully implemented within the Centre Toptec in the past period.
High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.
The paper describes an achromatic Steinhal type doublet that employs an aspherical surface to allow wide angle imaging. A design criteria, optimization techniques and tolerancing of the doublet are described. Further a manufacturing process of the system and achieved optical performance measurement is discussed. Benefits of the wide angle imaging doublet are recently planned to be used in automotive industry application, namely for optimizing of head-light performance and their final evaluation. The final device is planned to be part of the production line.
Etienne Renotte, Steve Buckley, Ileana Cernica, François Denis, Richard Desselle, Lieve De Vos, Silvano Fineschi, Karl Fleury-Frenette, Damien Galano, Camille Galy, Jean-Marie Gillis, Estelle Graas, Rafal Graczyk, Petra Horodyska, Nektarios Kranitis, Michal Kurowski, Michal Ladno, Sylvie Liebecq, Davide Loreggia, Idriss Mechmech, Radek Melich, Dominique Mollet, Michał Mosdorf, Mateusz Mroczkowski, Kevin O’Neill, Karel Patočka, Antonis Paschalis, Radek Peresty, Bartlomiej Radzik, Miroslaw Rataj, Lucas Salvador, Jean-Sébastien Servaye, Yvan Stockman, Cédric Thizy, Tomasz Walczak, Alicja Zarzycka, Andrei Zhukov
This paper presents the current status of ASPIICS, a solar coronagraph that is the primary payload of ESA’s formation
flying in-orbit demonstration mission PROBA-3.
The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity
sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead
to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like
conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of
the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light
corona where the main coronal mass is concentrated.
The PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging
Investigation of the Corona of the Sun) is designed as a classical externally occulted Lyot coronagraph but it takes
advantage of the opportunity to place the external occulter on a companion spacecraft, about 150m apart, to perform high
resolution imaging of the inner corona of the Sun as close as ~1.1 solar radii. The images will be tiled and compressed on
board in an FPGA before being down-linked to ground for scientific analyses.
ASPIICS is built by a large European consortium including about 20 partners from 7 countries under the auspices of the
European Space Agency. This paper is reviewing the recent development status of the ASPIICS instrument as it is
approaching CDR.
Etienne Renotte, Andres Alia, Alessandro Bemporad, Joseph Bernier, Cristina Bramanti, Steve Buckley, Gerardo Capobianco, Ileana Cernica, Vladimir Dániel, Radoslav Darakchiev, Marcin Darmetko, Arnaud Debaize, François Denis, Richard Desselle, Lieve de Vos, Adrian Dinescu, Silvano Fineschi, Karl Fleury-Frenette, Mauro Focardi, Aurélie Fumel, Damien Galano, Camille Galy, Jean-Marie Gillis, Tomasz Górski, Estelle Graas, Rafał Graczyk, Konrad Grochowski, Jean-Philippe Halain, Aline Hermans, Russ Howard, Carl Jackson, Emmanuel Janssen, Hubert Kasprzyk, Jacek Kosiec, Serge Koutchmy, Jana Kovačičinová, Nektarios Kranitis, Michał Kurowski, Michał Ładno, Philippe Lamy, Federico Landini, Radek Lapáček, Vít Lédl, Sylvie Liebecq, Davide Loreggia, Brian McGarvey, Giuseppe Massone, Radek Melich, Agnes Mestreau-Garreau, Dominique Mollet, Łukasz Mosdorf, Michał Mosdorf, Mateusz Mroczkowski, Raluca Muller, Gianalfredo Nicolini, Bogdan Nicula, Kevin O'Neill, Piotr Orleański, Marie-Catherine Palau, Maurizio Pancrazzi, Antonios Paschalis, Karel Patočka, Radek Peresty, Irina Popescu, Pavel Psota, Miroslaw Rataj, Jan Rautakoski, Marco Romoli, Roman Rybecký, Lucas Salvador, Jean-Sébastien Servaye, Cornel Solomon, Yvan Stockman, Arkadiusz Swat, Cédric Thizy, Michel Thomé, Kanaris Tsinganos, Jim Van der Meulen, Nico Van Vooren, Tomáš Vit, Tomasz Walczak, Alicja Zarzycka, Joe Zender, Andrei Zhukov
KEYWORDS: Coronagraphy, Sensors, Sun, Solar processes, Field programmable gate arrays, Light emitting diodes, Electronics, Staring arrays, Space operations, Information operations
The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase.
In the framework of development of ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), the Centre Spatial de Liege is responsible of the optical design of the coronagraph and the optics will be manufactured by TOPTEC. The particularity of this coronagraph is to have an external occulter located 150 m ahead of the first imaging lens. This external occulter is re-imaged on an internal occulter which function is - as in a classical externally occulted Lyot coronagraph - to block the sun light diffracted by the external occulter and to reduce the straylight on the detector. The selection of this configuration is driven by the requirement to observe the corona as close as possible to the solar limb (i.e. 1 RSun) without imaging the limb itself. A requirement of 1.08 RSun is specified at optical design level to grant 1.2 Rsun at instrument level. The coronograph instrument is designed to have a field of view of 1.6° x 1.6° with a resolution of less than 6 arcsec. Its performances are limited by diffraction in a 530 – 590 nm wavelength range. This paper presents the optical design and demonstrates that by design the requirements are fulfilled within the misalignment, manufacturing and thermo-elastic error contributions.
We have realized an optical design of air space doublet of 100 mm clear aperture and 520 mm focal length that is optimized with respect to a quality of wavefront error better than 0.07 λ RMS for on-axis imaging at wavelengths of 633 nm and 450 nm. To minimize optical aberrations we have designed one of the four surfaces to be an aspherical. Based on a tolerance analyses those take into account planned spherical and aspherical technologies for surfaces realization and measurement equipment we have realized the doublet. In the paper there is described a technique of the optical design, tolerance analysis, technique of objective realization and results of the optical elements realization.
Affordable, long-wave infrared hyperspectral imaging calls for use of an uncooled FPA with high-throughput optics. This paper describes the design of the optical part of a stationary hyperspectral imager in a spectral range of 7–14 um with a field of view of 20°×10°. The imager employs a push-broom method made by a scanning mirror. High throughput and a demand for simplicity and rigidity led to a fully refractive design with highly aspheric surfaces and off-axis positioning of the detector array. The design was optimized to exploit the machinability of infrared materials by the SPDT method and a simple assemblage.
The presented paper shows results and a comparison of FEM numerical simulations and optical tests of the assembly of a precise Zerodur mirror with a mounting structure for space applications. It also shows how the curing of adhesive film can impact the optical surface, especially as regards deformations. Finally, the paper shows the results of the figure quality analysis, which are based on data from FEM simulation of optical surface deformations.
It has been designed a new type of interferometer working in extreme ultraviolet (XUV) region and intended for direct
imprinting of densest possible (for given wavelength) interference pattern into a substrate.
The interferometer belongs to the wave-front division category: each of its two aspheric mirrors reflects approximately
one half of incoming laser beam and focuses it into a point image. Both focused beams have to intersect each other, and
in the intersection region an interference pattern is generated. The closer the intersection region is to the abovementioned
point images, the smaller the interference field is, but simultaneously the smaller the fringe-pitch is.
This paper describes interferometer design (inclusive fringe-pitch calculation, and inclusive design of multilayer
reflection coatings for the wavelength 46.9 nm (Ar8+ laser) – ensuring equal reflectivity at different reflection angles).
The interferometer design is supplemented not only by ray-tracing verification of straight shape of interference fringes in
ideal interferometer, but also by modelling of interference pattern of real interferometer with various misalignments as
well as with random deformation of mirrors. These data enable to define necessary production as well as alignment
tolerances.
PROBA-3 is a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future ESA missions. PROBA-3 will fly ASPIICS (Association de Satellites pour l’Imagerie et l’Interferométrie de la Couronne Solaire) as primary payload, which makes use of the formation flying technique to form a giant coronagraph capable of producing a nearly perfect eclipse allowing to observe the sun corona closer to the rim than ever before. The coronagraph is distributed over two satellites flying in formation (approx. 150m apart). The so called Coronagraph Satellite carries the camera and the so called Occulter Satellite carries the sun occulter disc. This paper is reviewing the design and evolution of the ASPIICS instrument as at the beginning of Phase C/D.
It is well known that at interaction of femtosecond Extreme Ultraviolet Radiation (XUV) with a surface it is possible – according to local fluency - to distinguish two main regions: the desorption region (when efficiency η of removing particles is <10%), and the ablation region (when efficiency η ~ 100%). In this case, the ablation threshold determination is very simple and relatively accurate. It was e.g. shown that with the help of mapping of morphology of the ablationdug- craters it is possible to determine the fluency distribution in/near the beam focus. However, recently we found that (1) the desorption efficiency η for nanosecond pulses is much higher than that for femtosecond ones and spans from zero at the periphery imprint to ~90% at the ablation threshold; this complicates the ablation threshold determination; (2) the direct nano-structuring of solid surfaces is possible only in the desorption region (e.g. the diffraction pattern generated in windows of in-proximity-standing-grid [K.Kolacek et.al., Laser and Particle Beams 30, 57-63, (2012)] is visible only in these parts of laser-beam-spot, which correspond to the desorption region). This prompted us to use this nano-patterning for determination of ablation threshold contour. The best possibility seems to be covering the laser beam spot by interference pattern. For that, it was necessary to develop a new type of interferometer, which (a) provides as dense interference pattern as possible, (b) uses practically all the energy of laser beam, (c) works with focused beams. Such interferometer has been designed and is described in this contribution.
In this work, we investigate a novel design of optical system for astrophysics. In addition, a new
testing method in the X-ray laboratory was verified. The proposed optical system is composed of modules with
Kirkpatrick-Baez configuration allowing usage of multi-foil mirrors arranged along a parabolic profile. This
system effectively uses a circular aperture, which is divided into petals. Individual petals consist of diagonally
oriented KB cells with a common focus. This optical system can be improved by a set of nested rotationally
symmetric X-ray mirrors in order to achieve higher reflection efficiency in harder part of considered spectrum.
There are presented first testing data and a design of a special Solc birefringent chain narrow-bandpass filter
that allows an astronomical observation of the Sun in wide number of interesting spectral lines (Hα, CaIIK,
Hβ, Hγ, D1, D3, etc.). It is described an idea of tuning of sub-filters that the filter is compound of. A special
aberrationless off-axis Maksutov telescope meeting demands for constant solar image scale in wavelength from
380 nm to 760 nm is also presented. This telescope equipped with the proposed filter is designed as a unity
providing a top quality imaging.
In this paper, the influence of surface micro-deformations of optical elements on an imaging quality of optical systems is studied. The discussed optical elements are made up of metal, glass or plastic material which are manufactured by a point machining (a turning operation), optical elements that are moulded from glass or plastic material and optical elements that are manufactured by classical technology, etc. The surface micro-deformations of optical elements surfaces are sources of optical aberrations which can decrease an imaging quality. As an imaging quality criterion of optical systems it is considered Strehl definition which describes in adequate way optical systems loaded by small aberrations. A detailed theoretical analysis of the influence of micro-deformations basic types on a value of the Strehl definition is introduced. New relations for a determination of acceptable optical elements micro-deformations are derived.
Prisms or prism systems in optical systems are used in different fields of science and engineering very frequently. Their technological deviations (e.g. degree of deviation between sides, etc.) induce an image doubling. In this paper we present a detailed analysis of the image doubling influence on the Modulation Transfer Function (MTF) of the optical system. Relations that enable to determine the acceptable technological tolerances of optical prism elements so that allowed image doubling does not create the unacceptable decrease of MTF of optical system under a test are derived.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.