Thin-film layer systems coated by various techniques on the optical component surface are the most common method to finishing laser optics. Anti-reflective thin-film coatings are essential in laser optics to limit unwanted retro-reflections and decrease the reflection-induced losses occurring on boundaries of optical materials and air. Several different technologies are available to prepare laser-quality coatings, when the most common are magnetron sputtering and electron-beam ion-assisted deposition. However, coating materials and deposition parameters may significantly affect both laser resistance and optical quality of the coatings, and the influence of mentioned factors is getting stronger with shorter wavelengths. In following will be disseminated laser damage threshold of anti-reflective coatings prepared by e-beam evaporation with ion assisted deposition and plasma activated reactive magnetron sputtering at wavelength 343 nm in ultra-short pulses regime.
For most of the laser applications is optics equipped with antireflective coatings must. Therefore, laser damage resistance and stability at high energies of used components is a key performance limiting factor at the large portion of the user cases. In UV region, issue of laser damage is particularly enhanced as many optical materials tends to degrade at longer exposure and any contamination may accelerate that. In the following paper will be disseminated laser damage performance of selected commercially available optical windows equipped with AR coatings, designed for high-power lasers in UV region. Damage threshold measured with mm-size laser beam will be compared and influence of the long exposure to ultrashort pulses will be considered.
This article is focused on the design of a beam delivery system based on hollow-core photonic crystal fiber. For our experiment, we chose a fiber with the Kagome structure developed by GLOphotonics. The central wavelength of the delivered beam was 1030 nm, so we chose the fiber PMC-C-Yb-7C. The first part of the article is a brief introduction to PERLA 100, the laser used for testing the efficiency of the beam delivery system developed by HiLASE Centre. The reader will be acquainted with the laser system parameters. The input beam parameters play an important role in the efficiency of focusing into the fiber. One of the key parameters is the M2 of the beam, as it has a direct effect on the size of the waist at the point of entry into the fiber. Another important parameter is the maximum energy in one pulse which can destroy the fiber structure. The size of the focusing point must match the size of the MFD of the fiber. Therefore, it is necessary to precisely define the size of the input beam into the focusing assembly with an accuracy of micrometers and to get rid of as many degrees of freedom as possible in the actual setup of the entire system. Another critical parameter is the size of the fiber input angle. The article aims to eliminate as many critical points as possible when setting up a focusing system and thus prevent damage to the fiber structure. One of the points is the simulation and calculation of the maximum possible loading of the fiber microstructure before its damage. With the help of gradual design modification, the aim is to achieve a coupling efficiency of more than 90 % by scaling the PERLA 100 output power from units of W up to 100 W.
The removal of multi-compound protective thin PVD films for stressed industrial tools using laser ablation could enhance or replace currently used procedures. Developing a laser removal process can shorten the processing time and costs. In the first step, the laser-induced damage threshold of the thin CrAlSiN coating and the WC-Co material was measured. Nanosecond and picosecond laser pulses were used for comparison. Furthermore, the dependence of the ablated material volume and ablation depth on the fluence and the number of pulses was measured. Finally, spectral analysis of the laser plasma generated during ablation was performed.
Laser-Induced Deep Etching (LIDE) is considered as the one of the most promising techniques for production of so-called TGVs (Through Glass Vias). In the production process, thin glass sheet is treated with ultra-short lasers pulses to induce surface and volume modification, allowing efficient wet etching and formation of through hole. Precise knowledge of damage threshold of such glass is essential when optimizing the whole process and scaling up the production via laser beam parallelization. In following paper, we present recent results on LIDT measurement of D263 glass sheets at wavelengths 1030 nm and 515 nm, effective utilization of such knowledge for setting up multi-Bessel beam processing optics, and we demonstrate resulting substrates with TGVs.
Thin-disk lasers are present in science and industry since the early 90s, yet not so many companies offer them commercially. This was a strong motivation for HiLASE to develop a versatile thin-disk laser platform that would be easily customized to user’s needs and provide a wide range of laser parameters, like output power up to 100 W, pulse energy up to 20 mJ, repetition rate 1-200 kHz, 1 ps pulse duration and wavelength range from Mid-IR to UV. During this presentation, we would like to introduce several customized systems used in different applications and their successful integration into industrial processes.
This article is focused on the design of an all-fiber laser that was supposed to be used for simulating power load similar to the power load in backbone networks. The first part of the article is a brief introduction to the topic of lasers and erbium doped fiber amplifiers. The following parts present design of a fiber laser with ring cavity, and measuring the ideal length of a doped fiber and the split ratio of the output coupler. After proposing the first stage –a laser– we focused on the construction of the two following stages –EDFA preamplifier and EDFA amplifier. There were used fibers with various levels of erbium ion density, namely ISO-GAIN I6, and Liekki ER110-4/125. The resulting output power of the whole system was 320 mW. This value is sufficient when we take into account that we used only single-mode fibers with energy pumped directly to the fiber core. The output wavelength of the whole laser system was 1559 nm.
This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.
Nowadays, aging of the optical components is a very current topic. Therefore, some investigations are focused on this area, so that the aging of the optical components is accelerated by thermal, high power and gamma load. This paper deals by findings of the influence of the load by laser with high optical power on the transmission parameters of the optical coupler. The investigated coupler has one input and eight outputs (1x8). Load by laser with high optical power is realized using a fiber laser with a cascade configuration EDFA amplifiers. The output power of the amplifier is approximately 250 mW. Duration of the load is moving from 104 hours to 139 hours. After each load, input power and output powers of all branches are measured. Following parameters of the optical coupler are calculated using formulas: the insertion losses of the individual branches, split ratio, total losses, homogeneity of the losses and cross-talk between different branches. All measurements are performed at wavelengths 1310 nm and 1550 nm. Individual optical powers are measured 20 times, due to the exclusion of statistical error of the measurement. After measuring, the coupler is connected to the amplifier for next cycle of the load. The paper contains an evaluation of the results of the coupler before and after four cycles of the burden.
This paper is dealing with problems and possibilities of RFoG (Radio Frequency over Glass) technology deployment into the new generation optical access networks. Passive optical networks (PON) offer, except high bit rate, also a very wide range of applicability for various traffic data services. These services can be combined with different transmission technologies. The one of the most important needs upon these networks is also their backward compatibility with older analog technologies. The experimental part is devoted to broadcasting of RFoG through the designed PON networks and experimental measurements, using objective methods. The conclusion of this article is focused on the evaluation of individual measurements and considering of the feasibility of RFoG technology deployment in practical utilization.
Next-generation passive optical access networks come to the fore nowadays. These optical next-generation networks are
the response to the increasing qualitative requirements from end users. Technologies using Time Division Multiplexing
include NG-PON (XG-PON 1 and XG-PON 2) and 10GEPON. Their advantage is the applicability to older topologies,
which are operated by the original technology of passive optical access networks. Wavelength Division Multiplexing
Passive Optical Network (WDM-PON) is an alternative also belonging to next-generation networks. Time Division
Multiplexing is in this case replaced by Wavelength Division Multiplexing. Certain variants of WDM-PON use a
combination of broadband light source, optical circulator, optical phased array and tunable FP laser. Construction of the
terminal units (ONU) is advantageous because it can always tune in to the appropriate wavelength in the given optical
DWDM channel (100 GHz). The disadvantage is the increased security risk on the primary layer due to channel crosstalk
in an optical phased array (AWG). The aim of this paper is to assess the degree of security risk in real conditions. The
article includes both simulation and real measurements in C + L bands with 100 GHz DWDM spacing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.