The original quantum eraser scheme [Scully and Druhl, Phys. Rev. A 25, 2208 (1982)] is based on the entanglement of the two sequentially and spontaneously emitted photons. We consider the scheme in which the first emitted photon is largely detuned from resonance. We use the Schrodinger equation approach and the Laplace transform method to obtain the Raman Emission Doublet(RED) state vector. An exact analytical expression for the two-photon correlation function is derived in a general form that applies to any polarization of the two detectors located at any position, including the near field regime where the distances are comparable to the wavelengths of the photons. Frequency dependent refractive indexes of the RED photons are also included.
A critical limitation of slow light schemes is the limited time-bandwidth product. Recently we showed that this limitation can be overcome by making use of inhomogeneities. Here we analyze the effects of crosstalk noise that can be induced by these inhomogeneities in certain situations, and how to minimize such noise. The proof of principle experiment was done using three-wave mixing in a photorefractive crystal Ce:BaTiO3 where Bragg selection is used to provide the inhomogeneity.
2D hexagonal lattice photonic crystal made of superconducting rods embedded in dielectric matrix and dielectric rods embedded in superconducting matrix are studied. We used two-fluid mode to describe the electromagnetic response of the superconductor phase. The superconductor-dielectric photonic band structures are computed using the plane wave expansion method. We found an extremely large low frequency gap as due to the electric field expulsion in the superconductor. Qualitative explanations for the dependency low frequency gap size on dielectric constant, penetration depth and filling fraction are given. A smaller gap has been found at much higher lattice constant/wavelength ratio. We also found a fundamental mode with extremely localized electric field in the dielectric phase, similar to the localized mode in defective photonic crystal. This photonic crystal could be useful for superhigh-Q periodic resonant cavities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.