REMI (Reduced Envelope Multispectral Imager) is a new instrument developed by Ball Aerospace specifically for the Sustained Land Imaging (SLI) program. The goal of REMI is to meet the current Landsat mission requirements with a much smaller volume, lower cost payload. A lower single unit recurring cost enables economies of scale on multiple builds by leveraging non-recurring engineering costs. This lower cost enables multiple copies on-orbit at the same time for improved temporal sampling, an innovative approach to space segment reliability, and more frequent technology onramps. REMI achieves miniaturization through use of a common aperture for all spectral bands. REMI features a pointing mechanism that compensates for platform and ground motion while using cross-track, step-stare pointing to produce contiguous ground coverage in all spectral bands. The status of the REMI development and airborne flight testing will be presented.
Space imagery provides a unique resource for addressing environmental challenges associated with land cover change, land use, disaster relief, deforestation, regional planning and global change research. At Ball Aerospace, we are developing the Compact Hyperspectral Prism Spectrometer (CHPS) as a candidate imaging spectrometer technology for insertion into future Sustainable Land Imaging missions. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should “maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information.” In support of this, NASA’s Sustainable Land Imaging-Technology (SLI-T) program aims to develop technology for a new generation of smaller, more capable, less costly payloads that meet or exceed current Landsat imaging capabilities. CHPS is designed to meet these objectives, providing high-fidelity visible-to-shortwave spectroscopic information. CHPS supports continuity of legacy Landsat data products, but also, provides a path to enhanced capabilities in support of land, inland waters, and coastal waters science. CHPS features full aperture full optical path calibration, extremely low straylight, and low polarization sensitivity; all crucial performance parameters for achieving the demanding SLI measurement objectives. In support of our space-borne instrument development, we have developed an airborne instrument to provide representative spectroscopic data and data products. Now in the final year of this 3-year development program, we have completed our initial engineering airborne flights and are beginning science flights. We present initial results from laboratory characterization and calibration and from our engineering flights and close with an overview of instrument performance.
The Advanced Camera for the Hubble Space Telescope has three cameras. The first, the Wide Field Camera, will be a high- throughput, wide field, 4096 X 4096 pixel CCD optical and I-band camera that is half-critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is a 1024 X 1024 pixel CCD camera that is critically sampled at 500 nm. The HRC has a 26 inch X 29 inch field of view and 29 percent throughput at 250 nm. The HRC optical path includes a coronagraph that will improve the HST contrast near bright objects by a factor of approximately 10 at 900 nm. The third camera, the solar-blind camera, is a far-UV, pulse-counting array that has a relatively high throughput over a 26 inch X 29 inch field of view. The advanced camera for surveys will increase HST's capability for surveys and discovery by a factor of approximately 10 at 800 nm.
The purposes of the Phase II alignment are to coalign mirror pairs for the FOC and FOS channels and to set the compensation mechanisms of each channel to the optimum positions to allow the overall system performance to be determined and verified through use of the RAS/HOMS equipment without requiring adjustment of the mechanism compensators during testing. This alignment process is performed with the COSTAR instrument installed in the COSTAR Alignment System (CAS), using a well characterized interferometer system as the optical source. The interferometer uses a custom designed reference sphere with built-in spherical aberration to enable the highly aberrated two-mirror systems to be observed in double-pass.
The corrective optics space telescope axial replacement (COSTAR) configuration contains mechanisms in each science instrument channel that allow for on-orbit correction for image plane focus and for lateral and axial mapping of the Hubble Space Telescope (HST) primary mirror onto the aspheric corrector mirrors. The optical alignment of the COSTAR optics is accomplished in two phases. In Phase I, the mirror bezel tilts and lateral positions are determined through the use of surrogate flat mirrors with the mechanism's positions held at the mid-range of their travel. The Phase I alignment is followed by Phase II interferometric optimization of all five optical channels. At the conclusion of the Phase I alignment, the optics are positioned accurately enough to allow simultaneous correction of most channels on orbit through the use of the mechanism compensation and telescope fine-pointing control. Individual mirror positions and orientations are determined through the use of alignment telescopes, theodolites, alignment lasers, and reference fiducials incorporated into the COSTAR Alignment System (CAS).
To facilitate the accurate placement and alignment of the corrective optics space telescope axial replacement (COSTAR) structure, mechanisms, and optics, the COSTAR Alignment System (CAS) has been designed and assembled. It consists of a 20-foot optical bench, support structures for holding and aligning the COSTAR instrument at various stages of assembly, a focal plane target fixture (FPTF) providing an accurate reference to the as-built Hubble Space Telescope (HST) focal plane, two alignment translation stages with interchangeable alignment telescopes and alignment lasers, and a Zygo Mark IV interferometer with a reference sphere custom designed to allow accurate double-pass operation of the COSTAR correction optics. The system is used to align the fixed optical bench (FOB), the track, the deployable optical bench (DOB), the mechanisms, and the optics to ensure that the correction mirrors are all located in the required positions and orientations on-orbit after deployment. In this paper, the layout of the CAS is presented and the various alignment operations are listed along with the relevant alignment requirements. In addition, calibration of the necessary support structure elements and alignment aids is described, including the two-axis translation stages, the latch positions, the FPTF, and the COSTAR-mounted alignment cubes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.