Weak magnetic fields affect a multitude of biological processes including cell metabolism and are hypothesized to be a result of magnetic field-sensitive spin-selective radical-pair reactions. To provide much needed visualization of this process, we demonstrate the use of a custom-built multimodal nonlinear optical imaging system capable of measuring the redox state of cells through multi-photon-excited autofluorescence and autofluorescence lifetime of metabolic cofactors. We demonstrate a custom multi-axis Helmholtz coil system to apply time-varying magnetic fields across the sample during imaging. This imaging platform allows for characterization and optimization of the effects of magnetic fields on live cells and tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.