We present a new functional near infrared spectroscopy (fNIRs) technique based on dual-comb optical interrogation applied to dispersive media (DC-fNIRS) that can retrieve the frequency response of a living tissue (such as the brain) by parallel sampling of its frequency response in amplitude and phase at specific frequencies. With this information, we can retrieve the impulse response (diffuse-time-of-flight measurements, DTOF) of the medium and extract the absolute optical properties of the tissue and the spatial localization of perturbations for functional analysis with millisecond temporal resolution and noiseless optical gain, increasing the penetration. We have tested these predictions studying a biomimetic phantom with the same optical characteristics as brain tissue confirming the capacities of the DC-fNIRs technique for diffuse media. The system is patent pending PCT/ES2022/070176.
We analyze the full counting statistics of photons emitted by a Nitrogen Vacancy center (NV) under non-resonant laser excitation and resonant micro-wave (MW) control. This allows to build a phenomenological model which relates the relevant physical parameters with the detected fluorescence. Furthermore, we can investigate the time correlations of the emitted photons and elaborate detection and polarization protocols to optimize the energy and time resources while maximizing the system sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.