Conventional solid-density laser-plasma targets quickly ionize to make a plasma mirror, which largely reflects ultra-intense laser pulses. This Fresnel reflection at the plane boundary largely wastes our e
orts at ultra-intense laser/solid interaction, and limits target heating to nonlinear generation of high-energy electrons which penetrate inward. One way around this dual problem is to create a material with an anisotropic dielectric function, for instance by nanostructuring a material in such a way that it cannot support the material responses which generate a specularly reflected beam. We present linear theory for metallic and plasma nanowires, particle-incell simulations of the interaction of ultra-intense femtosecond pulses with nickel nanowires, showing penetration of laser light far deeper than a nickel skin-depth, helping to uniformly heat near-solid material to conditions of high energy-densities, and XFEL experiments giving insight into their ionization and excitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.