We introduce a novel model capturing user preference using the Bayesian approach for recommending users' preferred multimedia content. Unlike other preference models, our method traces the trend of a user preference in time. It allows us to do online learning so we do not need exhaustive data collection. The tracing of the trend can be done by modifying the frequency of attributes in order to force the old preference to be correlated with the current preference under the assumption that the current preference is correlated with the near future preference. The modification is done by partitioning usage history data into smaller sets in a time axis and then weighting the frequencies of attributes to be computed from the partitioned sets of the usage history data in order to differently reflect their significance on predicting the future preference. In the experimental section, the learning and reasoning on user preference in genres are performed by the proposed method with a set of real TV viewers' watching history data collected from many real households. The reasoning performance by the proposed method is also compared with that by a typical method without training in order to show the superiority of our proposed method.
In this paper, we introduce a new supervised learning method of a Bayesian network for user preference models. Unlike other preference models, our method traces the trend of a user preference as time passes. It allows us to do online learning so we do not need the exhaustive data collection. The tracing of the trend can be done by modifying the frequency of attributes in order to force the old preference to be correlated with the current preference under the assumption that the current preference is correlated with the near future preference. The objective of our learning method is to force the mutual information to be reinforced by modifying the frequency of the attributes in the old preference by providing weights to the attributes. With developing mathematical derivation of our learning method, experimental results on the learning and reasoning performance on TV genre preference using a real set of TV program watching history data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.