Current ORC and LRC tools are not connected to design in any way. They are pure shape-based functions. A wafer-shape based power and performance signoff is desirable for RET validation as well as for "closest-to-silicon" analysis. The printed images (generated by lithography simulation) are not restricted to simple rectilinear geometries. There may be other sources of such irregularities such as Line Edge Roughness (LER). For instance, a silicon image of a transistor may not be a perfect rectangle as is assumed by all current circuit analysis tools. Existing tools and device models cannot handle complicated non-rectilinear geometries.
In this paper, we present a novel technique to model non-uniform, non-rectilinear gates as equivalent perfect rectangle gates so that they can be analyzed by SPICE-like circuit analysis tools. The effect of threshold voltage variation along the width of the device is shown to be significant and is modeled accurately. Taking this effect into account, we find the current density at every point along the device and integrate it to obtain the total current. The current thus calculated is used to obtain the effective length for the equivalent rectangular device. We show that this method is much more accurate than previously proposed approaches which neglect the location dependence of the threshold voltage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.