This paper reviews advances in sub-THz photonic frequency conversion using optoelectronic transistors for future fully coherent access network systems. Graphene-channel field effect transistors (G-FETs) and InP-based high electron mobility transistors (inP-HEMT) are experimentally examined as photonic frequency converters. Optoelectronic properties and three-terminal functionalities of the G-FETs and InP-HEMTs are exploited to perform single-chip photonic double-mixing operation over the 120 GHz wireless communication band. A single transistor can photomix the optical subcarriers to generate LO and mix down the RF data on the sub-THz carrier to the IF band.
In future radio access systems, base stations will be mainly accommodated in wavelength- and time-division multiplexing passive optical network (PON) based mobile backhaul and fronthaul networks, and in such networks, failed connections in an optical network unit (ONU) wavelength channel will severely degrade mobile system performance. A cost-effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue, we propose a reflectometry-based remote sensing method that provides ONU wavelength channel information with the optical line terminal-ONU distance. The proposed method enables real-time monitoring of ONU wavelength channels without data signal quality degradation and is also able to determine if the ONUs are connected to the PON. Experimental results show that it achieves wavelength channel distinction with a high distance resolution (∼10 m). Additionally, with the method, the distance resolution for distinguishing the ONUs after the PON splitter is determined by the received signal bandwidth or the test light modulation speed rather than by the pulse width as in conventional optical time-domain reflectometry.
Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.
KEYWORDS: Radio over Fiber, WDM-PON, Signal to noise ratio, Antennas, Computer simulations, Time division multiplexing, Receivers, Radio optics, Hybrid fiber radio, Wavelength division multiplexing
This paper addresses the wireless channel capacity in small cells provided by RoF-DAS over WDM-PON that can increase the capacity in a small cell with RoF entrance link and MIMO distributed antenna. Considering the SNR of the RF signal transmitted in the RoF entrance network and the interferences among wireless cells, computer simulation results show the optimized cell size to maximize the MIMO channel capacity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.