Highly stable, high peak output power pulsed transmitter sources in the 2000 nm band are essential seed lasers for diverse applications such as LIDAR, ground-to-space optical communications, detection of trace gases in the atmosphere, medical applications, and pumping optical parametric oscillators and supercontinuum sources. Previous work utilizing single clad, single mode fibers has demonstrated pulsed mode operation of an optically amplified source at 2051 nm and 2090 nm with pulse widths ranging from 5–500 ns, pulse repetition frequencies (PRFs) of 20–300 kHz, and peak output pulse energies of 10 μJ. In this paper, we report the design and performance of a novel nanosecond MOPA optical transmitter at a signal wavelength of 2070 nm with more than 250 W peak output power and highly stable output pulses. The seed laser is broadened using a phase modulator, to minimize the onset of optical nonlinearities such as SBS and MI and then amplified using a two-stage Ho-doped fiber amplifier (HDFA) employing 8-μm core active fiber. The amplified signal is then transmitted through a tandem arrangement with a 250 MHz acousto-optic modulator (AOM) followed by a high-speed electro-optic amplitude modulator (EOM). This pulses signal is then reamplified by a two-stage HDFA where the second stage employs a 20-μm core active fiber, which reduces the threshold for the onset of nonlinear effects such as modulation instability (MI) and four-wave mixing. We present a comparison of optical simulation results with experimental data for the medium- and large-core Ho-doped fibers in the MOPA transmitter.
We report the results of gamma radiation testing of the performance of 1064 nm packaged butterfly single mode DFB lasers (QD Laser QLD1061) for satellite and space applications. Both passive and active tests were conducted, with measurements of output power, optical signal-to-noise-ratio (OSNR), output spectra, and polarization extinction ratio (PER) as a function of dose rates and total radiation exposure. No significant changes in laser behavior were observed for total doses up to 100 kRad.
We present the design and performance of a narrow linewidth single frequency 2039 nm distributed feedback (DFB) fiber Bragg grating (FBG) fiber laser source with a novel optical pumping configuration at 1567 nm that significantly increases optical-optical pump conversion efficiency. Our new configuration employs an optical circulator and a reflector at 1567 nm to efficiently recycle pump light that is not absorbed in the first pass through the FBG-DFB fiber laser. We report a comparison of simulations with experimental results for the novel high efficiency single frequency 2039 nm Tm-doped fiber laser source.
Current progress in infrared LIDAR, atmospheric sensing, and DWDM transmission system experiments highlights the need for large bandwidth, high dynamic range polarization-maintaining (PM) optical amplifiers in the 1900 nm—2100 nm band [1—6]. Amplifiers that can operate efficiently near the high wavelength end of this band at 2090—2100 nm are particularly attractive for many emerging applications. In this paper we present the first simulated and experimental results for a newly developed miniature packaged Ho-doped fiber amplifier that is optimized for operation at 2090—2100 nm and employs high performance single clad PM Hodoped fiber (iXblue IXF-HDF-PM-8-125). Our goal in building a packaged PM Holmium-doped fiber amplifier (HDFA) at 2100 nm is to provide a miniaturized device with output powers of > 200 mW CW, high small signal gain, low noise figure, and large OSNR that can be used in many applications as a versatile wideband preamplifier or power booster amplifier. Our novel miniature HDFA package, shown in the photograph of Figure 1, has dimensions of 97 × 78 × 15 mm3, incorporates full pump control electronics, and communicates via an RS232 interface. The device is fully isolated against external and internal reflections and employs FC/APC connectors for the input and output ports.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.