PurposeWe aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT.ApproachA cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal.ResultsPrewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy.ConclusionUsing parallel cascade systems’ analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.
The goal of this study is to understand how the normalized glandular dose coefficient (𝐷𝑔𝑁𝐶𝑇) varies with projection angle in dedicated cone-beam breast computed tomography (CBBCT). Seventy-five CBBCT clinical datasets from a research database were used for this study. All samples were segmented into skin, adipose and fibroglandular tissues. The segmented volumes were used in a Monte Carlo simulation package (GATE 8.0) to estimate the radiation dose at 10 angles in a full scan. An analytical model is proposed, and this model predicted that the angular 𝐷𝑔𝑁𝐶𝑇 follows a sine wave and the maximum is related to the center of geometry of the fibroglandular tissue (COGf ). The angular 𝐷𝑔𝑁𝐶𝑇 from Monte Carlo simulations was consistent with our model and follows a sine wave with amplitude of 0.0376. The maximum of the wave occurs when the x-ray source is approximately at head position, which is consistent with our model. Our results indicate that the higher angular 𝐷𝑔𝑁𝐶𝑇 occurs when the x-ray source is superior to the breast. This suggests using a x-ray source trajectory inferior to the breast for short-scan CBBCT design.
Dedicated breast computed tomography (BCT) is an emerging clinical modality that can eliminate tissue superposition
and has the potential for improved sensitivity and specificity for breast cancer detection and diagnosis. It is performed
without physical compression of the breast. Most of the dedicated BCT systems use large-area detectors operating in
cone-beam geometry and are referred to as cone-beam breast CT (CBBCT) systems. The large-area detectors in CBBCT
systems are energy-integrating, indirect-type detectors employing a scintillator that converts x-ray photons to light,
followed by detection of optical photons. A key consideration that determines the image quality achieved by such
CBBCT systems is the choice of scintillator and its performance characteristics. In this work, a framework for analyzing
the impact of the scintillator on CBBCT performance and its use for task-specific optimization of CBBCT imaging
performance is described.
Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.
Optically derived tissue properties across a range of breast densities and the effects of breast compression on estimates of hemoglobin, oxygen metabolism, and water and lipid concentrations were obtained from a coregistered imaging system that integrates near-infrared spectral tomography (NIRST) with digital breast tomosynthesis (DBT). Image data were analyzed from 27 women who underwent four IRB approved NIRST/DBT exams that included fully and mildly compressed breast acquisitions in two projections—craniocaudal (CC) and mediolateral-oblique (MLO)—and generated four data sets per patient (full and moderate compression in CC and MLO views). Breast density was correlated with HbT (r=0.64, p=0.001), water (r=0.62, p=0.003), and lipid concentrations (r=−0.74, p<0.001), but not oxygen saturation. CC and MLO views were correlated for individual subjects and demonstrated no statistically significant differences in grouped analysis. Comparison of compressed and uncompressed imaging demonstrated a significant decrease in oxygen saturation under compression (58% versus 50%, p=0.04). Mammographic breast density categorization was correlated with measured optically derived properties.
Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.
KEYWORDS: X-rays, Spatial resolution, Imaging systems, Digital mammography, Modulation transfer functions, Sensors, X-ray imaging, Spatial frequencies, Digital imaging, Signal to noise ratio
Columnar CsI(Tl) screens are now routinely used for digital x-ray imaging in a wide variety of applications such as mammography, dental radiography, and non-destructive testing. While commercially available CsI(Tl) screens exhibit excellent properties, it is possible to significantly improve their performance. Here, we report on a new design of a columnar CsI(Tl) screen. Specifically, columnar CsI(Tl) screens were subjected to mechanical pixelation for minimizing the long range spread of scintillation light within the film, thus enhancing spatial and contrast resolution, and increasing the detective quantum efficiency (DQE(f)) of the digital imaging detector. To date we have fabricated up to 200 μm thick pixelated CsI(Tl) screens for mammography, and characterized their performance using a CCD camera. This paper presents a comparison of the new pixelated CsI(Tl) screens, conventional columnar CsI(Tl) screens, and Gd2O2S(Tb) screens. The data show that pixelated screens substantially improve the DQE(f) of the digital imaging system.
KEYWORDS: Modulation transfer functions, Digital mammography, X-rays, Sensors, Scintillators, Computing systems, Quantum efficiency, Photodiodes, Signal detection, Signal processing
The physical performance characteristics of a clinical full-field digital mammography (FFDM) system were analyzed for different target/filter conditions using theoretical modeling and experimental measurements. The signal and noise propagation through the various stages of the FFDM system was simulated as a cascaded process and used to compute the frequency dependent detective quantum efficiency (DQE) of the system. The presampling modulation transfer function (MTF) of the system and the noise power spectra (NPS) of the system were measured under the different spectral conditions as used in the theoretical model at an exposure close to 10-mR from which corresponding DQEs were computed. The experimental zero frequency DQE after filtering the x-ray beam through 45-mm acrylic was estimated at 0.51, 0.48, and 0.46 for Mo/Mo, Mo/Rh, and Rh/Rh respectively. A good agreement between the theoretical and experimental results was observed. The clinical digital mammography system appears to exhibit favorable physical characteristics and similar models could be used to design and optimize other imaging systems.
KEYWORDS: Image compression, Mammography, Digital mammography, Image filtering, Eye, Digital imaging, Medical imaging, Eye models, Performance modeling, Data storage
The objective of this study was to evaluate an image compression technique for digital mammography using a nonprewhitening matched filter with an eye filter (NPWE) and channelized Hotelling numerical observer models. A total of 1024 images were cropped from clinical digital mammograms and used as backgrounds. The images were acquired using a clinical full-field digital mammography (FFDM) system and masses of sizes 30, 40, and 60 pixels (100 μm pixel size) were simulated. In addition, microcalcifications were synthetically extracted from clinical digital mammograms and used in the study. Image compression was achieved using a compression software (JPEG 2000, Aware Inc., Bedford, MA) at compression ratios 1:1, 15:1 and 30:1. The channelized Hotelling observer model was investigated only for the mass type lesions by transforming the images to channel space and computing the Hotelling trace for each compression condition. The NPWE model was investigated for both lesions and micocalcifications at all compression conditions and the detection indices were computed by assuming Gaussian statistics and by the 'percent correct’ detection method. The results of the study indicated a reduction in detection with increased compression for microcalcifications at 30:1 compression while almost no variation in detection index was observed for the simulated masses.
KEYWORDS: Signal to noise ratio, Mammography, Breast, Imaging systems, Sensors, X-rays, Modulation transfer functions, Scintillators, Tumor growth modeling, Digital mammography
Detection of lesions in planar mammograms is a difficult task, predominantly due to the masking effect of superimposed parenchymal breast patterns. Tomographic imaging of the breast can provide image slices through the breast, possibly reducing this masking effect. In recent years, there has been interest in developing CT mammography using flat-panel digital detectors in a truncated cone-beam geometry. In this study, we have developed a framework for determining optimal design and acquisition parameters for such a CT mammographic system. The ideal observer SNR is used as a figure-of-merit, under the assumptions that the imaging system is linear and shift-invariant, and that the noise is stationary. The ideal observer calculation uses mathematical models of signal and noise propagation through the flat-panel detector, and realistic models of the lesion detection task in breast imaging. It is used to investigate optimal kVp settings of a tungsten anode spectra for CT imaging of the uncompressed breast, given the constraint of an average glandular dose approximately equivalent to that of a two-view planar mammography study. It is observed that modeling a realistic mammographic background structure into the detection task can affect the optimal kVp settings suggested by the ideal observer SNR. Since the exposure/view in flat-panel CT mammography is considerably lower than for planar mammography, it is observed that electronic additive noise can also affect the optimal kVp setting. In general, the optimal kVp settings for the tungsten anode spectra studied here were in the range of 30-50 kVp.
KEYWORDS: Digital mammography, Imaging systems, Data modeling, Signal to noise ratio, Signal detection, Error analysis, Sensors, Modulation transfer functions, X-ray imaging
In this investigation we studied the imaging characteristics of a mammographic screen-film (MinR-2000, Eastman Kodak Co.) and an amorphous-silicon flat-panel digital mammography system (Senographe 2000D, GE Medical Systems) based on information perception by human observers. The focus of the study was to utilize an effective means to estimate the contrast-detail characteristics of x-ray imaging systems at various threshold levels to evaluate system performance with reduced observer subjectivity. We obtained three images of a contrast-detail phantom (CDMAM, Nuclear Associates) with screen-film and three images with digital mammography under identical exposure conditions. The digital images were printed using dry film printer (DryView 8600, Eastman Kodak Co.) after being windowed/leveled appropriately by two experienced radiologists. Seven observers reviewed the images and 'proportion correct' detection data were computed for each observer. A psychophysical signal detection model that hypothesizes a continuous decision variable internal to the observer with Gaussian probability density functions was used to fit the experimental observer data. Projection data from the detection curves at 50%, 62.5%, and 75% threshold levels were used to generate contrast-detail diagrams. Digital mammography, on average, exhibited lower (better) threshold contrast-detail characteristics compared to screen-film mammography.
KEYWORDS: Sensors, Signal to noise ratio, Modulation transfer functions, X-ray detectors, X-rays, Electric field sensors, Spatial resolution, Tellurium, Semiconductors, X-ray characterization
In this paper, the detected signal-to-noise was measured and related to the tube current (mA) setting. The line spread function amplitude (LSF) dependence on drift distance of a 3 mm thick detector, for 100 kVp, 100 mA, with an applied electric field of 50 V/mm, and 100 V/mm, were measured. In addition, the dependence of the modulation transfer function [MTF(f)] of the x-ray detector system on the applied bias voltage has been experimentally determined. The experimental setup, although is not offered for large field-of-view imaging applications, offers capabilities for feasibility studies, research and evaluation of the temporal response and noise characteristics of a Cd1-xZnxTe detector, for fast digital radiographic and CT applications. The experimental results indicate that Cd1-xZnxTe detectors exhibit both a high signal-to-noise ratio and linear response, as well as a good spatial resolution within the diagnostic energy range. Tor system improves both with increasing applied bias voltage and decreasing detector thickness. A study is in process aimed at improving the spatial resolution of the x-ray system by suitable optimization of the system geometry as well as the system temporal response.
Bindu Pillai, George Giakos, Amlan Dasgupta, Samir Chowdhury, Srinivasan Vedantham, P. Ghotra, J. Odogba, Victor Vega-Lozada, Ravi Guntupalli, Sankararaman Suryanarayanan, Robert Endorf, Anthony Passalaqua, William Davros
The detected signal and noise contributions were measured and related to the radiation exposure and tube current tube setting. Furthermore, the detector contrast has been experimentally determined. The experimental results indicate that Cd1-xZnxTe detectors have high detector contrast resolution. Therefore, they appear to be very attractive for x-ray digital imaging applications.
The purpose of this paper is to present the engineering principles of a cost-effective and efficient positron emission tomography (PET) detector operating on novel hybrid principles. The novelty of the proposed technology, which can be considered a low-cost alternative to the photomultiplier tube, consists of a BaF2 crystal coupled to coupled to an ultra low-pressure noble-gas filled tube, which operates under photoionization of excited states, in the prebreakdown regime. The design detector principles, the first Townsend coefficient, and the gas multiplication factor of the hybrid microstrip detector have been studied. The results of this study indicate that an adequate gas multiplication process can be achieved with a Xe filled gas detector operating at low gas pressures. Also, low-pressure gas-filled detectors have the advantages of being themselves insensitive to radiation, ensuring that only the light from the scintillator is detected in a high-energy radiation environment.
Amlan Dasgupta, George Giakos, Samir Chowdhury, Srinivasan Vedantham, Sankararaman Suryanarayanan, Ravi Guntupalli, Bindu Pillai, Permjit Ghotra, Donna Richardson, Robert Endorf, Anthony Passalaqua
The purpose of the study is to optimize the input and the output parameters of a dual energy CdZnTe semiconductor detector for chest radiography. The optimal detector parameters were obtained by maximizing the figure of merit, defined as the ratio between the square of the signal-to- noise ratio and the absorbed dose, for chest radiography.
Samir Chowdhury, George Giakos, Amlan Dasgupta, J. Odogba, P. Ghotra, Bindu Pillai, Srinivasan Vedantham, Donna Richardson, Anthony Passalaqua, Robert Endorf
The use of a gas microstrip detector in dual-energy radiography for certain clinical applications is explored. Optimal conditions of this technology for digital chest radiography are presented. These optimal conditions were obtained via computer simulations. The gas microstrip detector shows promise for achieving high spatial resolution, high internal gain, low noise and through the use of dual-energy techniques, high contrast resolution.
KEYWORDS: Sensors, Capacitance, Amplifiers, Signal to noise ratio, Field effect transistors, Image sensors, Resistors, Digital imaging, Radiography, Modulation transfer functions
The purpose of this study is to measure the electrical parameters of the Cd1-1ZnxTe detectors, with the aim of characterizing the optimal detector performance parameters for digital radiographic applications.
The goal of this study is to optimize the gas composition medium and strip geometry of a small-field of view gas- microstrip detector for medical imaging applications, such as x-ray digital imaging, computed tomography, quantitative autoradiography, including other nuclear medicine applications. The gas multiplication factor as well as the electrical parameters of the microstrip substrate have been studied. The results of this study indicate that an adequate gas multiplication process can be achieved with a Xe filled gas detector operating up to 10 atm.
The x-ray capture, conversion into charge carriers, ion transport mechanisms and image formation mechanisms within a high-gas pressure digital radiographic system, operating up to 60 atm., are presented and analyzed. In detail, the physics of the high-pressure KCD imaging detectors is exposed, analyzed and related to the detector and image quality parameters. Specifically, this study indicates that ion diffusion cannot account for all the experimental observations. It advances the hypothesis that, at sufficiently high pressures, formation of molecular clusters with narrowed mobility distribution take place, through energy exchange mechanism, with local potential forces such that they compensate the space charge distortion of the applied field strength.
The objective of this research is to provide the physical and engineering principles of novel gas detector media operating on gas-microstrip principles. It is believed that the presented technology will have a significant impact on x-ray digital radiography, with emphasis on dual- energy imaging, computed tomography (CT), microtomography and x-ray microscopy, as well as in nuclear medicine, particularly in the important area of quantitative autoradiography, single photon emission tomography (SPECT) and (PET).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.