Vertical-cavity semiconductor optical amplifiers (VCSOAs) are interesting devices because of their small form factor, potential low manufacturing cost, high coupling efficiency to optical fiber, and polarization independent gain. In this paper, an overview of the properties and possible applications of long-wavelength VCSOAs is given. We present general design rules and analyze how the mirror reflectivity affects the properties of the VCSOA. Experimental results of reflection-mode VCSOAs operating at 1.3-μm wavelength are presented. The devices were fabricated using InP-GaAs wafer bonding and were optically pumped by a 980-nm laser diode. These VCSOAs have demonstrated the highest fiber-to-fiber gain (17 dB), as well as the highest saturation output power (-3.5 dBm) of any long-wavelength VCSOA to date. We have also used these VCSOAs for optical preamplification at 10 Gb/s. Using an 11-dB gain VCSOA, the sensitivity of a regular PIN detector was increased by 7 dB resulting in a receiver sensitivity of -26.2 dBm.
We present detailed yet largely analytical models for gain, optical bandwidth, and saturation power of vertical-cavity laser amplifiers (VCLAs) in reflection and transmission mode. VCLAs are potential low-cost alternatives to in-plane laser amplifiers and they have the inherent advantage of polarization insensitivity, high fiber coupling efficiency, and low noise figure. Simple formulas for the optical gain-bandwidth product are derived which are valid for any type of Fabry-Perot amplifier. Our saturation model is based on rate equations for electrons and holes. It considers a sub-linear material gain, gain enhancement by the standing wave effect, Auger recombination, defect recombination, and spontaneous emission. Common linear approximations are avoided to correctly predict performance limits. Excellent agreement with measurements on novel 1.3-micron VCLAs is obtained. The models are used to analyze device performance and to investigate optimization options. With reduced top mirror reflectivity and increased pump efficiency, substantial and simultaneous improvements of optical bandwidth and saturation power are predicted without sacrificing gain. Parameter plots are given which allow for an easy exploration of the VCLA design space, matching desired performance goals with the required mirror reflectivity and pump current.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.