Photothermoplastic medium (PTPM) is a non-silver two-layer, semiconductor-thermoplastic, structure for optical data recording, which is radiative resistant. It allows to record photographic, holographic and other kinds of optical data without any wet chemical development that giving the maximal economic effect for Space and airborn usage.
The recent development of kW fiber laser sources makes the concept of laser systems operating at power levels from
tens of kilowatts up to 100-kilowatt levels a reality. The use of volume Bragg gratings for spectral beam combining is
one approach to achieve that goal. To make such systems compact, lower the complexity and minimize the induced
thermal distortions we propose and demonstrate the use of special volume Bragg elements which have several Bragg
gratings written inside as combining optical components. The multiplexed volume Bragg gratings (MVBGs) were
recorded in photo-thermo refractive glass and three beams with total power of 420 W were successfully combined using
one MVBG. The combining efficiency was 97% and there was no significant beam quality degradation. The results
demonstrated that the approach of using multiplexed volume Bragg gratings for spectral beam combining is an excellent
extension to the current state of the art combining techniques. Especially valuable is the capability to reduce the number
of optical elements in the system and while being able to manage the expected thermal load when kilowatt level sources
are used for beam combining.
A Fabry-Perot etalon, consisting of two π phase shifted reflecting volume Bragg gratings, is presented. These gratings
are obtained as a moiré pattern resulting from sequential recording of interference patterns with different periods in
photo-thermo-refractive glass and called moiré volume Bragg gratings (MVBGs). A detailed investigation of the
fundamental operating principles and measurement techniques for phase shifted gratings is shown. Experimental results
demonstrating a MVBG with a 15 pm bandwidth and 90% transmission at resonance are presented. The use of the
MVBG for longitudinal mode selection in a laser resonator is shown.
We have developed a model to explain the phenomena of electron focusing by pyroelectric and photogalvanic crystals. The pyroelectric crystals used to compare experiments with theory were Fe doped and un-doped LiNb03. The crystals were either heated from the +z end or illuminated with a laser (to test photogalvanic effect). Heating the crystals by passing a current through a resistor attached to the +z end produced the pyroelectric effect: a change in polarization in response to a change in temperature. Illuminated with a CW solid-state diode pumped laser (532 nm, 100 mW) produces the photogalvanic effect: the build up of charge on the polar surfaces of the crystal. In both cases the polar ends of the crystal becomes electrically charged and produced self-focusing electron beams that were imaged on a ZnS screen. Using different targets we have produced x-rays, and demonstrated x-ray imaging of metal masks.
The problem of high-brightness, narrow line semiconductor lasers sources is important for different kinds of applications. The proposed solution of the problem is the use of an external cavity with volume Bragg grating for effective angular and spectral selection. High-efficient volume Bragg gratings provide complete selection directly in space of wave vectors and serve as a diaphragm in angular space. The condition of effective selection is the provision of a substantial difference in losses for a selected mode by matching angular selectivity of a Bragg grating with divergence of the selected mode. It was proposed off-axis construction of an external cavity with a transmitting volume Bragg grating as an angular selective element and a reflecting volume Bragg grating as a spectral selective feedback. In such external cavity broad area laser diodes have shown stable near-diffraction limited generation in the wide range of pumping current. For LD with 0.5% AR-coated mirror and 150 μm stripe it was achieved 1.7 W output power with divergence of 0.62° at current exceeding six thresholds. Total LD slope efficiency in the considered external cavity is less then slope efficiency of free running diodes by 3-5% only. Spectral width of such locked LD emission was narrowed down to 250 pm in the whole range of pumping current.
Photo-thermo-refractive (PTR) glasses have shown high efficiency and stability for different applications in laser systems. One of the applications of diffractive elements in PTR glasses is to use them for high power laser beam control and combining which requires an increase of the size of these elements. The opportunities of recording large aperture Bragg gratings by using a translational (multi-frame exposure) technique and by using an Ar+ ion laser with higher power operating at 334.5 nm and 351 nm are studied. It is shown that photosensitivity of PTR glass at 334.5 nm and 351 nm is comparable to that of 325 nm. Because of higher power at 334.5 nm and 351 nm, the recording of large aperture holograms at these wavelengths is possible. Large-aperture holograms produced by multi-frame technique are demonstrated.
We discuss phenomena of the optical photons and charged particle channeling in the periodic structures. While particle (as protons) channeling is widely used for the characterization of defects in crystals, channeling of photons is less known. We have demonstrated feasibility of optical channeling method for copying of phase radial grating on the chalcogenide semiconductor glass film and photo-thermoplastic films (PTPF). Chalcogenide glassy semiconductors (CGS) as a medium for recording of optical information have some advantages such as the possibility of achieving a higher resolution power, stability, and a high photosensitivity. We report about recording of the radial phase grating in the doped As-S-Se (CGS). Radial grating was recorded by making copy from the master phase grating placed in the near-field zone and exposure to the CW green (λ=532 nm) low power (P=100 mW) solid-state laser or incoherent UV source. The exposure time has been varied from 15 to 30 min. The recording process could be explained by optical channeling. This phenomenon gives us an opportunity to create phase radial grating using coherent and incoherent illumination.
Photo-thermo-plastic film (PTPF) is a multi-layer structure with the resolving power up to 1000 line pairs per millimeter in the binary and/or half-tone optical data recording modes. These structures are high-sensitive in the spectral range from 400 to 800 nm which is determined by chalcogenide glassy semiconductors (CGS) layer in the PTPF. We technologically challenged the CGS by tin-doping; this allows satisfying to main requirements which high-efficient observation systems are demanding.
PTPF-based devices imply some critical elements for providing PTPF sensitization by means of the corona discharge as well as thermal development of the latent image to the form of superficial relief on the PTPF. Such PTPF-based slit camera was used for airborne monitoring of the Black Sea surface from the 9000-m-altitude. Camera resolving power is high enough for determining of waves heights and spacing as well for discovering of small sea objects and determining of their speed and drift direction. PTPF-based remote sensing seems to be even more advantageous due to the possibility to record different images multiple (up to 100) times on a single PTPF frame within the "recording - read-out - thermal erasing - re-recording" cycle.
An algorithm for automatic measurements of the sea surface conditions is proposed. The measured parameters are height and spacing of waves as well as their motion direction. Mathematical processing includes 2-D smoothing of sample data, forming 1-D profile of the waves, and calculating its Fourier transform. By introducing of the scale factors, it makes possible to obtain certain data on the waves' characteristics. This system allows compressing of 2-D information to numerical data flow which is characterizing the rough seas and transmitting of these data through communication channels.
Photo-thermo-plastic films (PTPF) with high-density recording (up to 1000 lines/mm) can be used repeatedly for structure zoned shooting. However, more work is underway to increase their light sensitivity and make it resistant to action of radioactive and powerful electromagnetic radiation. It was found that chalcogenide glass semidonductors (CGS) combine properties of both glasses and semiconductors that determine possibility of its using in different systems of optical data recording. Most bright prepresentatives of glass semiconductors are being sulfide and selenide of arsenic. Results of complex investigations on photelectric properties of their thin layers are presented.
The paper presents results of technological changing of the field of maximal photosensitivity of CGS layers in the range of optical spectral range from 400 to 800 nm, which satisfies requirements of optical data recording systems for spectrum-zoned-shooting. For increasing of CGS thin layers' photsensitivity the initial materials were doped by tin. Experiments have shown that doping by Sn on the level 1.2-1.4 at % increases photosensitivity of layer by more than one order of magnitude. High photosensitivity of obtained PTPF determines possibility of their wide application in different optical image registration systems, which can be used as board memory devices.
We have studied holographic grating recordings in Fe-doped photorefractive crystals LiNbO3 (LN), in doped As-S-Se chalcogenide glassy semiconductors (CGS), and in CGS based photothermoplastic structures (PTPS). Transmission gratings in a-cut crystals of LN were efficient enough to demonstrate the effect of optical channeling. Volume gratings recorded in LN crystals may be used as a parallel array of the planar waveguides. For CGS, slanted grating geometry was tested, with the goal being the creation of asymmetric blazed gratings. Asymmetry of non-Bragg diffraction orders was observed. For the first time, reflection volume grating were recorded in 2μm thick CGS by green solid-state laser. We have also tested the possibility of single beam contact recording in LN, using CGS with recorded grating as beam-splitter attached to the surface of LN.
We have studied holographic grating recording in Fe-doped photorefractive crystals LiNbO3 (LN) and in doped As-S- Se chalcogenide glassy semiconductor (CGS) films. Transmission gratings in (alpha) -cut crystals of LN are efficient enough to demonstrate effect of optical channeling. Volume gratings recorded in LN crystals may be used as a parallel array of the planar waveguides. For the CGS slanted grating geometry was tested, aiming on creation of asymmetric blazed gratings. Asymmetry of non-Bragg diffraction orders was observed and its was 12 times enhanced by a gold coating. For the first time reflection volume grating were recorded in 2 mm thick CGS by green solid state laser ((lambda) equals 532 nm, P equals 100 mW).
Photothermoplastic media (PTPM) is a non-silver two-layer, semiconductor-thermoplastic, structure for optical data recording which is radiative resistant. The PTPM allows to record photographic, holographic and other kinds of optical data without any wet chemical development that makes them maximal useful for remote sensing applications. Optical data of photothermoplastic recording are characterized by simplicity of developing and erasing processes. We elaborated the PTPM which is photosensitive in different spectral ranges, stable to radiation light mark, being able to record halftones and increasing the resolution of lens- PTPM system at the frequencies close to limiting characteristics of the lenses. Such a medium can work in a circular scheme providing the multiple write-erasure mode of recording. The image obtained on PTPM can be transmitted to the observation station instantly or with a necessary delay. The resolution of PTPM is a function of a thermoplastic layer thickness and varies from 200 to 1800 mm. PTPM may secure information recording in a broad spectral range from X-rays to IR. Camera is a single unit, which includes special light intensive eight-lens objective with visual resolution of 960 mm-1 and weight of 7 kg. Precise tape-drawing mechanism secures movement of the PTPM with the speed of 1.5 to 2.5 mm/s what is sufficient for compensation of displacement of the Earth surface. The ground tests using stroke optical focusing pattern showed resolution of 240 mm-1 by simultaneous movement of the apparatus and film relative to the optical focusing pattern.
We report a photosensitive composite structure consisting of chalcogenide glassy semiconductors and copolymeric thermoplastic materials. Our researches were aimed to find out new approaches of using photothermoplastic materials. (PTPM) as two-layered media for holographic and optical data recording. This approach was based on creating the modified PTPM structures with enhanced characteristics as well as on performing the new processes of recording onto PTPM. Some modifications in the recording procedure and equipment setup were carried out. It is established that PTPM systems based on donor-acceptor layers have a photosensitivity of 10-3 to 10-4 J/cm2. The introduction into them an additive of photochromic dye increases the photosensitivity of donor-acceptor systems by 2 - 3 times. The essential growth in photosensitivity is observed in the blue-to-green range of spectrum. A method of photothermoplastic recording of holograms on a PTPM with a photosensitive layer of chalcogenide glassy semiconductors is proposed. Storing the whole data file of holograms followed by their development does the recording of optical information.
We report a non-silver, two-layered semiconductor-thermoplastic structure for visible and X-ray data recording. Photothermoplastic materials (PTPM) consist the chalcogenide glassy semiconductors and polymeric thermoplastic materials. Our researches were aimed to find out a possibility of using the PTPM as recording media for imaging including X-rays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.