As the replacement costs of military aircraft escalate, there is an increasing trend to operate existing aircraft well
beyond their original design life. As the fleet ages, structural problems such as airframe corrosion and cracking are becoming significant issues. In recent years, bonded composite patches or doublers have been developed to repair or reinforce defective regions of the airframe. However certification concerns have limited most application of these bonded composite repairs to secondary structures. In order to alleviate certification concerns, and thus facilitate the implementation of this repair technology to critical damage in primary structure, the 'smart patch' approach has been proposed. This approach involves incorporating sensors into the composite patch to self-monitor patch health. This paper describes the use of optical fibre Bragg gratings to measure the changes in thermal residual strain that occur when a composite patch starts to disbond from the parent structure. Conventionally, the Bragg sensing mechanism relies on a shift in reflected wavelength, which requires the use of costly optical measurement tools. A modified sensing arrangement is proposed, which incorporates two Bragg gratings, and a fibre optic coupler. The reflection from the first Bragg grating acts as a reference source for an active Bragg grating on the patch. This modified arrangement allows a relative wavelength shift to be translated into a change in the optical power, which can be measured easily using a low cost interrogation system. The modified sensing arrangement also allows us to more readily miniaturise the opto-electrical interrogation system, thus enabling these systems to be more easily implemented on operational aircraft.
The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the optical disbond detection system that is being developed. While certification concerns exist with embedding sensors in repairs, this study shows that embedded optical fibre sensors may provide for a health monitoring system with enhanced reliability and sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.