A promising new tool in shock wave physics is the generation of shock waves in test materials through the impact of small, laser-accelerated discs ('flyers'). In order to achieve the necessary one-dimensional condition of uniaxial strain in the shock-loaded material, it is vital that flyers maintain a nearly planar geometry during the acceleration and impact processes. The geometry of the flyer is significantly influenced by the spatial intensity profile of the driving laser beam. With the goal of achieving a nearly uniform drive intensity for this application, we have evaluated a diffractive, microlens-array beam shaper for use with a high-energy, Nd:Glass laser driver. Based on the near-field spatial profile of this multimode laser, a 30-mm-diameter array containing multiple hexagonal diffractive lenslets was designed and fabricated. In combination with a primary integrator lens of 76.2-mm focal length, this optical element was intended to produce a uniform intensity distribution over a 2-mm-diameter spot at the focal plane of the primary lens. Beam profiling studies were performed to determine the performance of this optical assembly. At the focal plane of the primary lens, the beam shaping optics generated a reasonably uniform profile over a large portion of the focused beam area. However, a small amount of undiffracted light resulted in a high-intensity, on-axis spike. A beam profile approaching the desired 'top hat' geometry could be obtained by moving the flyer launch plane a few mm inside or outside of the focal plane. The planarity of flyers generated using this optical assembly was evaluated using a line-imaging, optically recording velocity interferometer system (ORVIS). Results of these measurements demonstrate the deleterious effect of the on-axis spike on flyer planarity. Acceptable conditions for useful flyer impact experiments can be obtained by operating at a position that provides a near-top-hat profile.
We have previously reported our observations of the dynamic behavior of laser driven plates. Recent improvements and modification of the imaging techniques have identified and provided measurements of Raleigh-Taylor (R-T) instabilities that occur in these events. The microscope system in the LLNL Micro Detonics Facility, was converted to an epi- illuminated polarization configuration. A double pulse nanosecond illuminator and a second independently focusable frame camera were also added to the system. A laser driven plate, that is a dense solid driven by a laser heated, lower density plasma, is inherently R-T unstable. The characteristics and growth of the instability determine whether or not the plate remains intact. In earlier reports we correlated the surface patterning of thin plates with the fiber-optical transmission modes. In subsequent experiments we noted that the plasma burn through patterning in thin plates and the surface patterning of thicker plates did not correspond to the thin plate early time patterning. These observations led to the suspicion of R-T instability. A series of experiments correlating plate thickness and pattern spatial frequency has verified the instability. The plates are aluminum, deposited on the ends of optical fibers. They are launched by a YAG laser pulse traveling down the fiber. Plate velocities are several kilometers per second and characteristic dimensions of the instabilities are a few to tens of microns. Several techniques were used to examine the plates, the most successful being specularly reflecting polarization microscopy looking directly at the plate as it flies toward the camera. These images gave data on the spatial frequencies of the instabilities but could not give the amplitudes. To measure the amplitude of the instability a semi-transparent witness plate was placed a known distance from the plate. As above, the plate was observed using the polarization microscope but using the streak camera as the detector. Both the launch of the plate and its impact into the witness plate are observed on the streak record. Knowing the plate velocity function from earlier velocimetry measurements and observing the variations in the arrival time across the plate, the amplitude of the instability can be calculated.
Laser driven plates have been used for several years for high velocity shock wave and impact studies. Recent questions about the integrity and ablation rates of these plates coupled with an improved capability for microscopic stop motion photography led to this study. For these experiments, the plates were aluminum, coated on the ends of optical fibers. A high power laser pulse in the fiber ionizes the aluminum at the fiber/coating interface. The plasma thus created accelerates the remaining aluminum to high velocities, several kilometers per second. We defined `thick' or `thin' coatings as those where a flying plate (flyer) was launched vs. the material being completely ionized. Here we were specifically interested in the thick/thin boundary to develop data for the numerical models attempting to predict flyer behavior.
Motivated by interest in optical firing systems for initiating explosives laser-induced damage thresholds have been investigated in step-index multimode fibers having pure fused silica cores. A compact multimode Nd/YAG laser operated at a pulsewidth of 16 ns was used for the experiments. The focusing geometry for introducing the beam into the fiber was chosen to avoid damage along the core/cladding interface as observed in previous studies. Five lots of twenty fibers each were tested with polishing steps varied between successive lots to produce improved fmishes on the fiber end surfaces. Each fiber was subjected to a sequence of progressively increasing energy densities up to a value more than 80 J/cm2. Initial damage was monitored by observing scattered HeNe laser light from the fiber faces using magnified video cameras. The majority of the fibers damaged initially at the rear fiber face once a " laser conditioning" process at the front fiber face was completed. In this process a visible plasma was generated at the front face for one or more laser shots. Rather than produce progressive damage at the front surface this process apparently improved the surface finish in nearly all cases resulting in improved resistance to damage. Other modes of damage along the fiber length were observed either at locations of handling stresses or at the location of highest static tensile stress corresponding to the fiber's minimum bend radius.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.