The largest source of noise in exoplanet and brown dwarf photometric time series made with Spitzer/IRAC is the coupling between intra-pixel gain variations and spacecraft pointing fluctuations. Observers typically correct for this systematic in science data by deriving an instrumental noise model simultaneously with the astrophysical light curve and removing the noise model. Such techniques for self-calibrating Spitzer photometric datasets have been extremely successful, and in many cases enabled near-photon-limited precision on exoplanet transit and eclipse depths. Self-calibration, however, can suffer from certain limitations: (1) temporal astrophysical signals can become aliased as part of the instrument model; (2) for some techniques adequate model estimation often requires a high degree of intra-pixel positional redundancy (multiple samples with nearby centroids) over long time spans; (3) many techniques do not account for sporadic high frequency telescope vibrations that smear out the point spread function. We have begun to build independent general-purpose intra-pixel systematics removal algorithms using three machine learning techniques: K-Nearest Neighbors (with kernel regression), Random Decision Forests, and Artificial Neural Networks. These methods remove many of the limitations of self-calibration: (1) they operate on a dedicated calibration database of approximately one million measurements per IRAC waveband (3.6 and 4.5 microns) of non-variable stars, and thus are independent of the time series science data to be corrected; (2) the database covers a large area of the "Sweet Spot, so the methods do not require positional redundancy in the science data; (3) machine learning techniques in general allow for flexibility in training with multiple, sometimes unorthodox, variables, including those that trace PSF smear. We focus in this report on the K-Nearest Neighbors with Kernel Regression technique. (Additional communications are in preparation describing Decision Forests and Neural Networks.)
The Spitzer Space Telescope currently operates in the "Beyond Era", over nine years past an original cryogenic mission. As the astronomy community continues to advance scientific boundaries and push beyond original specifications, the stability of the Infrared Array Camera (IRAC) instrument is paramount. The Instrument Team (IST) monitors the pointing accuracy, temperature, and calibration and provides the information in a timely manner to observers. The IRAC IST created a calibration trending web page, available to the general astronomy community, where the team posts updates of three most pertinent scientific stability measures of the IRAC data: calibration, bias, and bad pixels. In addition, photometry and telescope properties from all the staring observations (>1500 as of April 2018) are trended to examine correlations with changes in the age or thermal properties of the telescope. A long, well-sampled baseline established by consistent monitoring outside anomalies and space weather events allows even the smallest changes to be detected.
We describe our ongoing efforts to model the field distortions of the Infrared Array Camera (IRAC) during the cryogenic portion of the Spitzer Space Telescope’s operations. We have compared over two million measured source positions in ~35,000 IRAC images with their positions in Gaia Data Release 1. Fitting 3rd and 5th order polynomials to the measured offsets, we find systematic uncertainties in IRAC-measured positions that are in the 50-60 milliarcsecond range for the 3.6 micron array, and 120-150 milliarcsecond range for the 4.5 micron array. A 5th-order fit does not appear to significantly improve the results over a 3rd order fit. However, this may be due at least partly to the failure of our current centroiding technique to account for variations in the Point Response Functions across each detector. We anticipate making several improvements in our continuing analysis, including (i) the refitting of the positions and position angles of each IRAC image using the Gaia catalog, (ii) making use of a less position-sensitive centroiding algorithm, (iii) correcting where possible for the proper motions of detected sources, and (iv) significantly increasing the number of source position measurements. Once finalized, the resulting distortion corrections will be incorporated into the headers of the archived images.
We present a database of reduced data for all staring mode observations taken with the Infrared Array Camera (IRAC) during the Spitzer warm mission to monitor instrument performance, predict future instrument performance, and facilitate exoplanet and brown dwarf science. Our motivation is to be informed so that we can mitigate the impact of changing thermal conditions on science. Monitoring current trends allows us to predict future instrument performance and to adjust our recommended suite of best practices and calibrations accordingly. From this database we show that instrumental effects detrimental to high precision photometry either remain stable or improve. A uniform reduction of all IRAC light curves has never before been published, and will enable powerful science including accurate comparative studies of exoplanets and brown dwarfs. IRAC has been performing well throughout the warm mission and we expect performance to remain excellent.
In more than ten years of operations, the Spitzer Space Telescope has conducted a wide range of investigations from
observing nearby asteroids to probing atmospheric properties of exoplanets to measuring masses of the most distance
galaxies. Observations using the Infrared Array Camera (IRAC) at 3.6 and 4.5um will continue through mid-2019 when
the James Webb Space Telescope will succeed Spitzer. In anticipation of the eventual end of the mission, the basic
calibrated data reduction pipeline designed to produce flux-calibrated images has been finalized and used to reprocess all
the data taken during the Spitzer warm mission. We discuss all final modifications made to the pipeline.
The Infrared Array Camera (IRAC) on the Spitzer Space Telescope has been used to measure < 10-4 temporal
variations in point sources (such as transiting extrasolar planets) at 3.6 and 4.5 μm. Due to the under-sampled
nature of the PSF, the warm IRAC arrays show variations of as much as 8% in sensitivity as the center of the
PSF moves across a pixel due to normal spacecraft pointing wobble and drift. These intra-pixel gain variations
are the largest source of correlated noise in IRAC photometry. Usually this effect is removed by fitting a
model to the science data themselves (self-calibration), which could result in the removal of astrophysically
interesting signals. We describe a new technique for significantly reducing the gain variations and improving
photometric precision in a given observation, without using the data to be corrected. This comprises: (1) an
adaptive centroiding and repositioning method ("Peak-Up") that uses the Spitzer Pointing Control Reference
Sensor (PCRS) to repeatedly position a target to within 0.1 IRAC pixels of an area of minimal gain variation;
and (2) the high-precision, high-resolution measurement of the pixel gain structure using non-variable stars. We
show that the technique currently allows the reduction of correlated noise by almost an order of magnitude over
raw data, which is comparable to the improvement due to self-calibration. We discuss other possible sources of
correlated noise, and proposals for reducing their impact on photometric precision.
Significant improvements in our understanding of various photometric effects have occurred in the more than nine years
of flight operations of the Infrared Array Camera aboard the Spitzer Space Telescope. With the accumulation of
calibration data, photometric variations that are intrinsic to the instrument can now be mapped with high fidelity. Using
all existing data on calibration stars, the array location-dependent photometric correction (the variation of flux with
position on the array) and the correction for intra-pixel sensitivity variation (pixel-phase) have been modeled
simultaneously. Examination of the warm mission data enabled the characterization of the underlying form of the pixelphase
variation in cryogenic data. In addition to the accumulation of calibration data, significant improvements in the
calibration of the truth spectra of the calibrators has taken place. Using the work of Engelke et al. (2006), the KIII
calibrators have no offset as compared to the AV calibrators, providing a second pillar of the calibration scheme. The
current cryogenic calibration is better than 3% in an absolute sense, with most of the uncertainty still in the knowledge of
the true flux densities of the primary calibrators. We present the final state of the cryogenic IRAC calibration and a
comparison of the IRAC calibration to an independent calibration methodology using the HST primary calibrators.
The dominant non-instrumental background source for space-based infrared observatories is the zodiacal light
(ZL). We present Spitzer Infrared Array Camera (IRAC) measurements of the ZL at 3.6, 4.5, 5.8, and 8.0 μm,
taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately
weekly IRAC observations near the north ecliptic pole over the period of roughly 8.5 years. This long time
baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk
with respect to the ecliptic, which is the true signal of the ZL. This is compared to both Cosmic Background
Explorer Diffuse Infrared Background Experiment data and a ZL model based thereon. Our data show a few
percent discrepancy from the Kelsall et al.(1998)1 model including a potential warping of the interplanetary dust
disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate
knowledge of the ZL is important for both extragalactic and Galactic astronomy including measurements of the
cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary
dust models. IRAC data can be used to further inform and test future ZL models.
The Spitzer Space Telescope Infrared Array Camera (IRAC) basic calibrated data reduction pipeline is designed to take
a single raw frame from a single IRAC detector and produce a flux-calibrated image that has had all well-understood
instrumental signatures removed. We discuss several modifications to the pipeline developed in the last two years in
response to the Spitzer warm mission. Due to the different instrument characteristics in the warm mission, we have
significantly changed pipeline procedures for masking residual images and mitigating column pulldown. In addition, the
muxbleed correction was turned off, because it is not present in the warm data. Parameters relevant to linearity
correction, bad pixels, and the photometric calibration have been updated and are continually monitored.
The Infrared Array Camera (IRAC) is now the only science instrument in operation on the Spitzer Space Telescope. The
3.6 and 4.5 µm channels are temperature-stabilized at ~28.7K, and the sensitivity of IRAC is nearly identical to what it
was in the cryogenic mission. The instrument point response function (PRF) is a set of values from which one can
determine the point spread function (PSF) for a source at any position in the field, and is dependent on the optical
characteristics of the telescope and instrument as well as the detector sampling and pixel response. These data are
necessary when performing PSF-fitting photometry of sources, for deconvolving an IRAC image, subtracting out a
bright source in a field, or for estimating the flux of a source that saturates the detector. Since the telescope and
instrument are operating at a higher temperature in the post-cryogenic mission, we re-derive the PRFs for IRAC from
measurements obtained after the warm mission temperature set point and detector biases were finalized and compare
them to the 3.6 and 4.5 µm PRFs determined during the cryogenic mission to assess any changes.
Carl Grillmair, Sean Carey, John Stauffer, Mark Fisher, Ryan Olds, James Ingalls, Jessica Krick, William Glaccum, Seppo Laine, Patrick Lowrance, Jason Surace
Spitzer observations of exoplanets routinely yield accuracies of better than one part in 10,000. However, there remain a
number of issues that limit the attainable precision, particularly for long duration observations. These include initial
pointing inaccuracies, pointing wobble, initial target drift, long-term pointing drifts, and low and high frequency jitter.
Coupled with small scale, intrapixel sensitivity variations, all of these pointing issues have the potential to produce
significant, correlated photometric noise. We examine each of these issues in turn, discussing their suspected causes and
consequences, and describing possible and planned mitigation techniques.
We present an overview of the calibration and properties of data from the IRAC instrument aboard the Spitzer Space
Telescope taken after the depletion of cryogen. The cryogen depleted on 15 May 2009, and shortly afterward a two-month-
long calibration and characterization campaign was conducted. The array temperature and bias setpoints were
revised on 19 September 2009 to take advantage of lower than expected power dissipation by the instrument and to
improve sensitivity. The final operating temperature of the arrays is 28.7 K, the applied bias across each detector is 500
mV and the equilibrium temperature of the instrument chamber is 27.55 K. The final sensitivities are essentially the
same as the cryogenic mission with the 3.6 μm array being slightly less sensitive (10%) and the 4.5 μm array within 5%
of the cryogenic sensitivity. The current absolute photometric uncertainties are 4% at 3.6 and 4.5 μm, and better than
milli-mag photometry is achievable for long-stare photometric observations. With continued analysis, we expect the
absolute calibration to improve to the cryogenic value of 3%. Warm IRAC operations fully support all science that was
conducted in the cryogenic mission and all currently planned warm science projects (including Exploration Science
programs). We expect that IRAC will continue to make ground-breaking discoveries in star formation, the nature of the
early universe, and in our understanding of the properties of exoplanets.
We present an analysis of the stability of the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope over
the first 4.5 years of in-flight operations. IRAC consists of two InSb and two Si:As 256x256 imaging arrays with
passbands centered on 3.6, 4.5. 5.8 and 8.0 microns. Variations in photometric stability, read noise, dark offsets, pixel
responsivity and number of hot and noisy pixels for each detector array are trended with time. To within our
measurement uncertainty, the performance of the IRAC arrays has not changed with time. The most significant variation
is that number of hot pixels in the 8 micron array has increased linearly with time at a rate of 60 pixels per year. We
expect that the 3.6 and 4.5 micron arrays should remain stable during the post-cryogenic phase of the Spitzer mission.
We will briefly discuss some science that is enabled by the excellent stability of IRAC.
Planning is underway for a possible post-cryogenic mission with the Spitzer Space Telescope. Only Channels 1
and 2 (3.6 and 4.5 μm) of the Infrared Array Camera (IRAC) will be operational; they will have unmatched
sensitivity from 3 to 5 microns until the James Webb Space Telescope is launched. At SPIE Orlando, Mighell
described his NASA-funded MATPHOT algorithm for precision stellar photometry and astrometry and presented
MATPHOT-based simulations that suggested Channel 1 stellar photometry may be significantly improved by
modeling the nonuniform RQE within each pixel, which, when not taken into account in aperture photometry,
causes the derived flux to vary according to where the centroid falls within a single pixel (the pixel-phase
effect). We analyze archival observations of calibration stars and compare the precision of stellar aperture
photometry, with the recommended 1-dimensional and a new 2-dimensional pixel-phase aperture-flux correction,
and MATPHOT-based PSF-fitting photometry which accounts for the observed loss of stellar flux due to the
nonuniform intrapixel quantum efficiency. We show how the precision of aperture photometry of bright isolated
stars corrected with the new 2-dimensional aperture-flux correction function can yield photometry that is almost
as precise as that produced by PSF-fitting procedures. This timely research effort is intended to enhance the
science return not only of observations already in Spitzer data archive but also those that would be made during
the Spitzer Warm Mission.
The Infrared Array Camera (IRAC) is a four-channel camera on the Spitzer Space Telescope, one of three focal plane science instruments. IRAC uses two pairs of 256×256 pixel InSb and Si:As IBC detectors to provide simultaneous imaging at 3.6, 4.5, 5.8, and 8 μm. IRAC experiences a flux of cosmic rays and solar protons that produce transient effects in science images from each of the arrays, with 4-6 pixels per second being affected during each integration. During extreme solar flares, IRAC experiences a much higher rate of transients which affects the science data quality. We present cosmic ray rates and observed detector characteristics for IRAC during the first two years of science operation, and rates observed in a period of elevated solar proton flux during an intense solar flare in January 2005. We show the changes to the IRAC detectors observed since launch, and assess their impacts to the science data quality.
The Infrared Array Camera (IRAC) is one of three focal plane instruments on board the Spitzer Space Telescope. IRAC is a four-channel camera that obtains simultaneous broad-band images at 3.6, 4.5, 5.8, and 8.0 μm in two nearly adjacent fields of view. We summarize here the in-flight scientific, technical, and operational performance of IRAC.
KEYWORDS: Calibration, Infrared telescopes, High dynamic range imaging, Space telescopes, Stray light, Infrared cameras, Stars, Infrared radiation, Space operations, Telescopes
We describe the astronomical observation template (AOT) for the Infrared Array Camera (IRAC) on the Spitzer Space Telescope (formerly SIRTF, hereafter Spitzer). Commissioning of the AOTs was carried out in the first three months of the Spitzer mission. Strategies for observing fixed and moving targets are described, along with the performance of the AOT in flight. We also outline the operation of the IRAC data reduction pipeline at the Spitzer Science Center (SSC) and describe residual effects in the data due to electronic and optical anomalies in the instrument.
The Infrared Array Camera (IRAC) on Spitzer Space Telescope includes four Raytheon Vision Systems focal plane arrays, two with InSb detectors, and two with Si:As detectors. A brief comparison of pre- flight laboratory results vs. in-flight performance is given, including quantum efficiency and noise, as well as a discussion of irregular effects, such as residual image performance, "first frame effect", "banding", "column pull-down" and multiplexer bleed. Anomalies not encountered in pre-flight testing, as well as post-flight laboratory tests on these anomalies at the University of Rochester and at NASA Ames using sister parts to the flight arrays, are emphasized.
The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF.
The Infrared Array Camera (IRAC) is one of three science instruments that will fly aboard the Space Infrared Telescope Facility mission scheduled for launch in December, 2001. This paper summarizes the `as built' design of IRAC along with important integration and testing results.
The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12 X 5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detectors arrays in the camera are 256 X 256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functionality and calibration tests completed at Goddard Space Flight Center, and provide estimates of the in-flight sensitivity and performance of IRAC in SIRTF.
SIRTF requires detector arrays with extremely high sensitivity, limited only by the background irradiance. Especially critical is the near infrared spectral region around 3 micrometers , where the detector current due to the zodiacal background is a minimum. IRAC has two near infrared detector channels centered at 3.6 and 4.5 micrometers . We have developed InSb arrays for these channels that operate with dark currents of < 0.2 e/s and multiply-sampled noise of approximately 7 e at 200 s exposure. With these specifications the zodiacal background limited requirements has been easily met. In addition, the detector quantum efficiency of the InSb devices exceeds 90% over the IRAC wavelength range, they are radiation hard, and they exhibit excellent photometric accuracy and stability. Residual images have been minimized. The Raytheon 256 X 256 InSb arrays incorporate a specially developed (for SIRTF) multiplexer and high-grade InSb material.
Spatial distributions of hole trap sites on a quasipixel level in InSb arrays for SIRTF are examined. The dependence of flux, fluence, and applied bias on image latency is investigated, and experimental results are presented and discussed. Models of linearity and capacitance are compared with experimental results. We find increasing the depletion width in a light exposed pixel by larger reverse biasing decreases the trapped charge (or latency) in that pixel by factors of approximately 3. Assumed pixel geometries lead to an apparent spatial density of active trap sites that falls quickly with distance from the implants.
The Polar Ozone and Aerosol Measurement [POAM II] instrument has been measuring the
vertical distribution of aerosols, poiar stratospheric clouds [PSC], ozone, as well as several other
atmospheric species since autumn 1993. The approach used to identify PSCs and polar mesospheric
clouds [PMCs] from POAM II measurements will be described along a presentation of some of the
early results of this high altitude cloud measurements. It is believed that the POAM II measurements
of PMCs represent the first reported observations of PMCs directly by extinction; all previous
observations utilized scattering.
Richard Bevilacqua, Eric Shettle, John Hornstein, Philip Schwartz, Davidson Chen, M. Fromm, William Glaccum, J. Lumpe, S. Krigman, D. Debrestian, David Rusch, Cora Randall, R. Todd Clancy, John Olivero
The polar ozone and aerosol measurement experiment (POAM II) was launched on the SPOT 3 satellite on 25 September 1993. POAM II is designed to measure the vertical profiles of the polar ozone, aerosols, water vapor, nitrogen dioxide, atmospheric density and temperature in the stratosphere and upper troposphere. It makes solar occultation measurements in nine channels defined by narrow-band filters. The field of view is 0.01 by 1.2 degrees, with an instantaneous vertical resolution of 0.6 km at the tangent point in the earth's atmosphere. The SPOT 3 satellite is in a 98.7-degree inclined sun-synchronous orbit at an altitude of 833 km. From the measured transmissions, it is possible to determine the density profiles of aerosols, O3, H2O, and NO2. Using the assumption of uniformly mixed oxygen, we are also able to determine the temperature. We present details of the POAM II instrument design, including the optical configuration, electronics and measurement accuracy. We also present preliminary results from the occultation measurements made to date.
We have developed optical measurement and control techniques that allow stable, precise adjustment and tracking of Fabry-Perot plate parallelism and spacing over a distance of many fringes with a precision of 20 nm. This extension of the range of optical position sensing has proved useful in controlling a cryogenic, electromagnetically driven, infrared spectrometer for astronomy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.