KEYWORDS: Motion models, Particles, Systems modeling, Solid modeling, Data modeling, Resistance, Mathematical modeling, Chemical elements, Computing systems, Finite element methods
In the analysis and design of military uniforms and body armor systems it is helpful to quantify the effects of the clothing/armor system on a wearer's physical performance capabilities. Toward this end, a clothing modeling framework for quantifying the mechanical interactions between a given uniform or body armor system design and a specific wearer performing defined physical tasks is proposed. The modeling framework consists of three interacting modules: (1) a macroscale fabric mechanics/dynamics model; (2) a collision detection and contact correction module; and (3) a human motion module. In the proposed framework, the macroscopic fabric model is based on a rigorous large deformation continuum-degenerated shell theory representation. The collision and contact module enforces non-penetration constraints between the fabric and human body and computes the associated contact forces between the two. The human body is represented in the current framework, as an assemblage of overlapping ellipsoids that undergo rigid body motions consistent with human motions while performing actions such as walking, running, or jumping. The transient rigid body motions of each ellipsoidal body segment in time are determined using motion capture technology. The integrated modeling framework is then exercised to quantify the resistance that the clothing exerts on the wearer during the specific activities under consideration. Current results from the framework are presented and its intended applications are discussed along with some of the key challenges remaining in clothing system modeling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.