Filtering of airborne laser scanning (ALS) point clouds into ground and nonground points is a core postprocessing step for ALS data. A hierarchical filtering method, which has high operating efficiency and accuracy because of the combination of multiscale morphology and progressive triangulated irregular network (TIN) densification (PTD), is proposed. In the proposed method, the grid is first constructed for the ALS point clouds, and virtual seed points are set by analyzing the shape and elevation distribution of points within the grid. Then, the virtual seed points are classified as ground or nonground using the multiscale morphological method. Finally, the virtual ground seed points are utilized to generate the initial TIN, and the filter is completed by iteratively densifying the initial TIN. We used various ALS data to test the performance of the proposed method. The experimental results show that the proposed filtering method has strong applicability for a variety of landscapes and, in particular, has lower commission error than the classical PTD filtering method in urban areas.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.