SignificanceTranscranial photobiomodulation (tPBM) is a noninvasive neuromodulation method that facilitates the improvement of human cognition. However, limited information is available in the literature on the wavelength- and site-specific effects of prefrontal tPBM. Moreover, 2-channel broadband near-infrared spectroscopy (2-bbNIRS) is a new approach for quantifying infra-slow oscillations (ISO; 0.005 to 0.2 Hz) of neurophysiological networks in the resting human brain in vivo.AimWe aim to prove the hypothesis that the hemodynamic and metabolic activities of the resting prefrontal cortex are significantly modulated by tPBM and that the modulation is wavelength- and site-specific in different ISO bands.ApproachNoninvasive 8-min tPBM with an 800- or 850-nm laser or sham was delivered to either side of the forehead of 26 healthy young adults. A 2-bbNIRS unit was used to record prefrontal ISO activity 7 min before and after tPBM/sham. The measured time series were analyzed in the frequency domain to determine the coherence of hemodynamic and metabolic activities at each of the three ISO frequency bands. Sham-controlled coherence values represent tPBM-induced effects on neurophysiological networks.ResultsPrefrontal tPBM by either wavelength and on either lateral side of the forehead (1) increased ipsilateral metabolic-hemodynamic coupling in the endogenic band and (2) desynchronized bilateral activity of metabolism in the neurogenic band and vascular smooth-muscle hemodynamics in the myogenic band. Site-specific effects of laser tPBM were also observed with significant enhancement of bilateral hemodynamic and metabolic connectivity by the right prefrontal 800-nm tPBM.ConclusionsPrefrontal tPBM can significantly modulate neurophysiological networks bilaterally and coupling unilaterally in the human prefrontal cortex. Such modulation effects are site- and wavelength-specific for each ISO band.
The temporal evolution of cortical activation and connectivity patterns during a fatiguing handgrip task were studied by functional near-infrared spectroscopy (fNIRS). Twenty-three young adults (18 to 35 years old) were recruited to use a handheld force sensor to perform intermittent handgrip contractions with their dominant hand at their personal maximum voluntary contraction force level for 3.5 s followed by 6.5 s of rest for 120 blocks. Subjects were divided into self-reported physically active and inactive groups, and their hemodynamic activity over the prefrontal and sensory-motor cortices (111 channels) was mapped while they performed this task. Using this fNIRS setup, a more detailed time sequence of cortical activation and connectivity patterns was observed compared to prior studies. A temporal evolution sequence of hemodynamic activation patterns was noted, which was different between the active and the inactive groups. Physically active subjects demonstrated delayed fatigue onset and significantly longer-lasting and more spatially extended functional connectivity (FC) patterns, compared to inactive subjects. The observed differences in activation and FC suggested differences in cortical network adaptation patterns as fatigue set in, which were dependent on subjects’ physical activity. The findings of this study suggest that physical activity increases FC with regions involved in motor task control and correlates to extended fatigue onset and enhanced performance.
Noninvasive transcranial photobiomodulation (tPBM) with a 1064-nm laser has been reported to improve human performance on cognitive tasks as well as locally upregulate cerebral oxygen metabolism and hemodynamics. However, it is unknown whether 1064-nm tPBM also modulates electrophysiology, and specifically neural oscillations, in the human brain. The hypothesis guiding our study is that applying 1064-nm tPBM of the right prefrontal cortex enhances neurophysiological rhythms at specific frequency bands in the human brain under resting conditions. To test this hypothesis, we recorded the 64-channel scalp electroencephalogram (EEG) before, during, and after the application of 11 min of 4-cm-diameter tPBM (CW 1064-nm laser with 162 mW / cm2 and 107 J / cm2) to the right forehead of human subjects (n = 20) using a within-subject, sham-controlled design. Time-resolved scalp topographies of EEG power at five frequency bands were computed to examine the tPBM-induced EEG power changes across the scalp. The results show time-dependent, significant increases of EEG spectral powers at the alpha (8 to 13 Hz) and beta (13 to 30 Hz) bands at broad scalp regions, exhibiting a front-to-back pattern. The findings provide the first sham-controlled topographic mapping that tPBM increases the strength of electrophysiological oscillations (alpha and beta bands) while also shedding light on the mechanisms of tPBM in the human brain.
KEYWORDS: Brain, Electroencephalography, Infrared lasers, In vivo imaging, Picture Archiving and Communication System, Cognition, Modulation, Data processing, Statistical analysis
Transcranial infrared laser stimulation (TILS) refers to the use of infrared laser to photobiomodulate the human brain, which has been reported beneficial in enhancing human cognition. We previously investigated TILS-induced electrophysiological effects and observed increases of power density in alpha wave oscillation. However, clear association between the brain wave alteration and improvement of neural cognition is limited. Phase–amplitude coupling (PAC) is a recently proposed neural mechanism for coordinating information processing across brain regions. In this study, we wish to examine if TILS would create any enhanced PAC at particular frequency bands in particular brain regions. A 64-channel electroencephalography (EEG) system was employed to determine placebo-controlled, electrophysiological activities from 19 healthy human participants before, during and after TILS. After a 2-minute baseline, we applied a 1064-nm laser with a total power of 3.5 W on the right forehead of each human participant for 8 minutes, followed by a 3-minute recovery period. An EEG processing package (Brainstorm) was used to perform cross-frequency PAC analysis for each participant’s measurement, followed by group-level, paired T-tests between the placebo and TILS conditions. The statistical results showed that TILS induced significant inter-cerebral PAC among several brain oscillations, specifically (1) slow-delta (0.5-1 Hz) activity modulating both alpha band (8-11 Hz) and high gamma band (70-85 Hz) activities, and (2) alpha band (8-11 Hz) modulating high gamma band (70-85 Hz) activity. All of these results suggest that TILS is able to enhance thalamocortical, cortical-hippocampal-cortical, and hippocampal-thalamic activity, all of which lead to enhancement of human cognition.
Photobiomodulation (PBM) refers to a non-destructive, non-thermal application of near infrared or infrared light (lasers or LEDs) on human tissues for medical benefits, such as for wound healing and pain reduction. The mechanism of PBM was understood as the absorption of photon energy by cytochrome-c-oxidase (CCO), the last enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. However, it is unclear which wavelengths would be optimal for PBM applications due to lack of systematic studies on wavelength dependence of PBM-induced effects. In this study, we wish to quantify and compare hemodynamic and metabolic benefits of PBM on human tissue with several central wavelengths. We employed 4 LEDs, whose spectral ranges were commonly used in PBM: 760 nm (FWHM=24nm), 810 nm (FWHM=30nm), 970 nm (FWHM=46nm), and 1070 nm (FWHM=55nm). The power densities of these LEDs were measured and calibrated by a spectrometer and power meter. We applied 5-minute PBM using each of these LEDs in vivo on the right forearm of 15 human participants. Corresponding placebo experiments were also carried out for rigorous comparison. Broadband near infrared spectroscopy (740-900 nm) was employed near the PBM site to quantify hemodynamic and metabolic responses during the PBM/placebo and a 3-minute recovery period. A multi-linear regression analysis based on the modified Beer-Lambert law was performed to estimate changes of oxy-hemoglobin, deoxy-hemoglobin, and cytochrome-c-oxidase concentration. Different patterns of hemodynamic and metabolic responses were observed for these 4 LED wavelengths, showing quantitative wavelength-dependent PBM effects.
The temporal evolution of cortical activation patterns during a handgrip task inducing forearm muscle fatigue was studied with functional near-infrared spectroscopy (fNIRS). Brain activation patterns mapped over the prefrontal and sensorimotor cortices (111 channels) and concurrent fatigue measurements, assessed by a force sensor, were studied for a group of physical active subjects versus an age-matched healthy, but non-exercising group. Thirteen young adults (18-35 years old) were recruited who performed intermittent handgrip contractions for 3.5s alternating with 6.5s of rest for 120 blocks with their dominant hand. Observed differences in activation and connectivity in the primary motor cortex (M1), premotor and supplementary motor cortex (PMC/SMA), and prefrontal cortex (PFC) in both hemispheres hinted at differences in compensatory tactics used by the brain based on available physical resources that depend on physical activity. Furthermore, our study demonstrated strengthened FC throughout the entire duration of the fatigue-inducing handgrip task. Ultimately, this ongoing study will provide baseline measurements on the brain’s compensatory patterns for follow-up work on older individuals with impaired cardiovascular health performing the fatiguing handgrip task.
Transcranial infrared laser stimulation (TILS) has shown effectiveness in improving human cognition and was investigated using broadband near-infrared spectroscopy (bb-NIRS) in our previous study, but the effect of laser heating on the actual bb-NIRS measurements was not investigated. To address this potential confounding factor, 11 human participants were studied. First, we measured time-dependent temperature increases on forehead skin using clinical-grade thermometers following the TILS experimental protocol used in our previous study. Second, a subject-averaged, time-dependent temperature alteration curve was obtained, based on which a heat generator was controlled to induce the same temperature increase at the same forehead location that TILS was delivered on each participant. Third, the same bb-NIRS system was employed to monitor hemodynamic and metabolic changes of forehead tissue near the thermal stimulation site before, during, and after the heat stimulation. The results showed that cytochrome-c-oxidase of forehead tissue was not significantly modified by this heat stimulation. Significant differences in oxyhemoglobin, total hemoglobin, and differential hemoglobin concentrations were observed during the heat stimulation period versus the laser stimulation. The study demonstrated a transient hemodynamic effect of heat-based stimulation distinct to that of TILS. We concluded that the observed effects of TILS on cerebral hemodynamics and metabolism are not induced by heating the skin.
Transcranial infrared laser stimulation (TILS) is a non-destructive and non-thermal photobiomodulation therapy or process on the human brain; TILS uses infrared light from lasers or LEDs and has gained increased recognition for its beneficial effects on a variety of neurological and psychological conditions. While the mechanism of TILS has been assumed to stem from cytochrome-c-oxidase (CCO), which is the last enzyme in the electron transportation chain and is the primary photoacceptor, no literature is found to report electrophysiological response to TILS. In this study, a 64-channel electroencephalography (EEG) system was employed to monitor electrophysiological activities from 15 healthy human participants before, during and after TILS. A placebo experimental protocol was also applied for rigorous comparison. After recording a 3-minute baseline, we applied a 1064-nm laser with a power of 3.5W on the right forehead of each human participant for 8 minutes, followed by a 5-minute recovery period. In 64-channel EEG data analysis, we utilized several methods (root mean square, principal component analysis followed by independent component analysis, permutation conditional mutual information, and time-frequency wavelet analysis) to reveal differences in electrophysiological response to TILS between the stimulated versus placebo group. The analyzed results were further investigated using general linear model and paired t-test to reveal statistically meaningful responses induced by TILS. Moreover, this study will provide spatial mapping of human electrophysiological and possibly neural network responses to TILS for first time, indicating the potential of EEG to be an effective method for monitoring neurological improvement induced by TILS.
KEYWORDS: Oxygen, Infrared lasers, Hemodynamics, Near infrared spectroscopy, In vivo imaging, Infrared radiation, Light emitting diodes, Nondestructive evaluation, Brain, Electron transport
Transcranial infrared laser stimulation (TILS) uses infrared light (lasers or LEDs) for nondestructive and non-thermal photobiomodulation on the human brain. Although TILS has shown its beneficial effects to a variety of neurological and psychological conditions, its physiological mechanism remains unknown. Cytochrome-c-oxidase (CCO), the last enzyme in the electron transportation chain, is proposed to be the primary photoacceptor of this infrared laser. In this study, we wish to validate this proposed mechanism. We applied 8 minutes in vivo TILS on the right forehead of 11 human participants with a 1064-nm laser. Broad-band near infrared spectroscopy (bb-NIRS) from 740-900nm was also employed near the TILS site to monitor hemodynamic and metabolic responses during the stimulation and 5-minute recovery period. For rigorous comparison, we also performed similar 8-min bb-NIR measurements under placebo conditions. A multi-linear regression analysis based on the modified Beer-Lambert law was performed to estimate concentration changes of oxy-hemoglobin (Δ[HbO]), deoxy-hemoglobin (Δ[Hb]), and cytochrome-c-oxidase (Δ[CCO]). We found that TILS induced significant increases of [CCO], [HbO] and a decrease of [Hb] with dose-dependent manner as compared with placebo treatments. Furthermore, strong linear relationships or interplays between [CCO] versus [HbO] and [CCO] versus [Hb] induced by TILS were observed in vivo for the first time. These relationships have clearly revealed close coupling/relationship between the hemodynamic oxygen supply and blood volume versus up-regulation of CCO induced by photobiomodulation. Our results demonstrate the tremendous potential of bb-NIRS as a non-invasive in vivo means to study photobiomodulation mechanisms and perform treatment evaluations of TILS.
Photobiomodulation with low-power, high-fluence light in the near-infrared range (600-1100nm), also known as low
level laser therapy (LLLT), has been used for promoting healing of wounds, reducing pain, and so on. Understanding its
physiological effect is essential for treatment optimization and evaluation. In this study, we used diffuse correlation
spectroscopy (DCS) to investigate the changes of regional blood flow in skeletal muscle induced by a single session of
LLLT. DCS is an emerging optical modality to probe microvascular blood flow in human tissues in vivo. We have
developed a software-based autocorrelator system with the benefits such as flexibility in raw photon count data
processing, portability and low cost. LLLT was administered at the human forearm with a 1064-nm, continuous-wave
laser. The emitting power was 3.4 W in an area of 13.6 cm2, corresponding to 0.25W/cm2 irradiance. The emitting
duration was 10 minutes. Eight healthy adults of any ethnic background, in an age range of 18-40 years old were
included. The results indicate that LLLT causes reliable changes in regional blood flow. However, it remains unclear
whether these changes are physiological or attributed to the heating effect of the stimulation laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.